Wood to Kilowatts

Cecil Massie, 6 Solutions, LLC

Fueling the Future:

The Role of Woody Biomass for Energy Workshop

April 2, 2009

Brainerd

Sponsored by:

University of Minnesota Extension, WesMin and Onanegozie RC&Ds, Natural Resource Conservation Service – Baxter, MN, Soil and Water Conservation District – Crow Wing County

www.extension.umn.edu/agroforestry
Wood to Kilowatts

Presented By:
Cecil Massie
6Solutions LLC

Fueling the Future Workshop
Brainerd, Minnesota
4/2/09
All rights reserved
• The chief challenge to using biomass to supply electricity in Minnesota not technical but geographic
 – Energy demand is where the people are
 – Supply is where the people aren’t
• Demographers estimate by 2020 75% of MN population will lie in a line from St. Cloud to Rochester
Minnesota Biomass and Population Maps

Biomass in the Corners

Population in the Metro
Alternative Processes

<table>
<thead>
<tr>
<th>Biomass Conversion Process</th>
<th>Power Process</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasification</td>
<td>Spark Ignited Engine</td>
<td>Electricity, Heat</td>
</tr>
<tr>
<td>Direct Combustion</td>
<td>Condensing steam turbine</td>
<td>Electricity</td>
</tr>
<tr>
<td>Combustion w Heat Recovery</td>
<td>Direct combustion w high pressure condenser</td>
<td>Electricity, Hot Water</td>
</tr>
<tr>
<td>Gasification</td>
<td>Combustion turbine w steam cycle</td>
<td>Electricity</td>
</tr>
<tr>
<td>Methanation</td>
<td>Combined Cycle Gas Turbine</td>
<td>Electricity</td>
</tr>
</tbody>
</table>
Spark Ignited Engine

- Suitable for small scale self generation
- Probably runs afoul of parallel generation prohibitions
 - May require a power purchase agreement with local power company
- May be used to drive specific connected loads such as compressors or hydraulic systems
- Gasification technology is still developing
Direct Combustion with Steam Turbine

Biomass

Solid Fuel Boiler

Stack Gas

Condenser

Steam Turbine

Generator

Cooling Tower to Atmosphere

Electricity
Direct Combustion

• Direct combustion is simplest process
 – Generate high pressure steam by burning wood
 – Generates power with steam turbine
 – Condensing system rejects waste heat to atmosphere through cooling towers
• Overall efficiency 35%
• Typically limited by biomass supply to 50 MW or less
Combined Heat and Power

Biomass
 ├── Solid Fuel
 │ └── Boiler
 ├── Stack Gas
 └── Condenser
 ├── Steam Turbine
 │ └── Generator
 │ └── Electricity
 └── Heating/Cooling
 └── District Energy
Combined Heat and Power

• Raises pressure at final condenser to make hot water for distribution through a heating district.
• Electric efficiency goes down, overall efficiency goes up to around 70%
• Heat load does not match power load most of the time resulting in less efficiency
 – Unused heat goes to cooling towers
IGCC

Biomass

- Gasifier

- Combustion Turbine/Generator

 - Heat Recovery Boiler

 - Condenser

 - Steam Turbine

 - Electricity

 - Cooling Tower
Integrated Gasification Combined Cycle
IGCC

• Builds on gas combined cycle technology by gasifying wood and then using a combustion turbine combined with a steam turbine.

• Higher efficiency than steam turbine alone

• Low heating value of the gas de-rates the turbine

• Capital intensive
Methanation and Transmission

Biomass

Methanation

Pipeline

Natural Gas Fired Combined Cycle Power Plant
• Methanation combines gasification with chemistry to convert biomass to pipeline quality natural gas replacement.

• Gas is transported by pipeline to combined cycle natural gas plant
 – May supply all or part of gas requirement
 – Compatible with existing natural gas plants

• Power plant and methanation plant are physically separated by long distance
Advantages of Methanation/Combined Cycle

• Overcomes logistical problems
 – No limit on scale – several methanation plants per generation site
 – Geographic diversity – build plants in different regions
 – Biomass diversity – different types in different plants
 – Keep biomass ash close to home for fertilizer

• Generation close to electricity demand
 – Lower transmission losses - 2% vs. 8%
 – Higher overall efficiency than IGCC

• Allows migration from natural gas to biomass over time by blending gas supplies
In Summary

- Scale is set by biomass quantity within economic region
- Technology selection is driven by biomass quality
 - Moisture
 - Size and variability
 - Debris
- Economics are driven by
 - Cost of fuel and transportation
 - Capital investment
 - PPA if required
 - Self generated energy value
Questions?

Cecil07@6solutionsllc.com
612-819-2235

www.6solutionsllc.com