Soil Impact of Biomass Harvest

Mike Demchik

The Main Concern

Additional removal of biomass from a logging site will reduce the productivity of the site. This impact could occur through:
- Reduced soil nutrients
- Reduced soil organic matter
- Reduced macropores (compaction)

Topics

- General Introduction to Soils
- The Nutrients in Question
- The Potential Pools of the Nutrients
- Where these could be a problem

The Primary Soils

- The surface layers of soil can be composed of:
 - Till (primarily unsorted materials, in some areas it can be very deep)
 - Moraines (ridges formed at the edge of the glaciers)
 - Glacial lake beds (areas of sand and mud deposited as the glaciers melted)
 - Outwash (sand and gravel sorted by meltwater)
For nutrient depletion (note: these are big generalizations)

Outwash
- Generally sand or loamy sand
- Low CEC (potentially limited nutrient pool)
- Often have in aspen (high user of nutrients) and conifers (low users)
- Potential area of concern

Till
- Often loamy sand/sandy loam
- Can be less susceptible to problems

Organic Site
- Can be nutrient sinks (often in brushland) and less susceptible
- Can have everything locked up (can be a problem)
Nutrient Pools

- Inputs → Deposition
- On site → Organic matter, Exchange sites (CEC), In minerals, In vegetation
- Exports → Leaching, Harvest

Nutrients (general)

- Calcium - cell wall, transport of nutrients, soil buffering
- Magnesium - chlorophyll, enzymes, soil buffering
- Potassium - proteins, photo, tightly cycled
- Nitrogen - protein, enzymes, chlorophyll (often limiting but deposition)
- Phosphorus - photosynthesis and many other reactions

Nutrients

- Calcium
- Magnesium
- Potassium
- Nitrogen
- Phosphorus

Soils Bases (Ca, Mg, K)

- Most likely to have problems
- Removed from site with logs
- More removed with biomass harvest than normal logging

Grigal 2004
Storage in trees

- K and Mg - leaves and branches
- Ca - also bark (wood is <1%, bark can be 2 or 3%)

Materials that could be harvested

- Possibly 60% more than pulp for conifers
- Possibly 100% for hardwoods (Keays 1975)
- This info will be available soon from DNR
- Tops contain higher level of soil nutrients
- 2X as much calcium (Bosman et al. 2001).

Biomass Harvest

- Potentially could remove twice as much bases with a biomass harvest
- On some sites this could be a lot and reduce future productivity

Grigal 2004 GEIS Update and Bockheim (UWM) research was used for much of this data
Nutrient Pools

Inputs ➔ Deposition

On site ➔ Organic matter
 Exchange sites (CEC)
 In minerals
 In vegetation

Exports ➔ Leaching
 Harvest

Mostly Grigal 2004
Bockheim
Others

Nutrient Pools

Inputs ➔ Deposition

On site ➔ Organic matter
 Exchange sites (CEC)
 In minerals
 In vegetation

Exports ➔ Leaching
 Harvest

Grigal 2004

Nutrient Pools

Inputs ➔ Deposition

On site ➔ Organic matter
 Exchange sites (CEC)
 In minerals
 In vegetation

Exports ➔ Leaching
 Harvest

In Vegetation

• Conifers
 – 250 lbs/acre Ca
 – 30 lbs/acre Mg
 – 150 lbs/acre K

• Hardwoods
 – 600 lbs/acre Ca
 – 50 lbs/acre Mg
 – 200 lbs/acre K

Total on site (Grigal 2004)
Ca 3000-15000 (lbs/a)
Mg 700-3700 (lbs/a)
K 195-1900 (lbs/a)

Bosman et al. 2001,
Keays 1975,
Grigal 2004

Not much to consider
Studies

• Olson et al. 1996 (Norway) reduction in pools in conifer site
• Federer et al. 1989 could reduce soil Ca by 20-60% over 120 years
• Silkworth and Grigal 1982 no diff on aspen
• Alban and Perala 1990 no diff spruce, aspen, pine
• Pennock and van Kessel 1997 no diff

Generally

• On many soils, even intensive harvest may not result in a problem
• The most likely place for problems are those with low levels of soil nutrient holding capacity

Potential Problem Sites

• Most likely
• Outwash sands (low nutrient holding capacity) with high nutrient demanding species (aspen/northern hardwoods)
• Shallow soils over bedrock (small amount of rooting medium)

One Additional Problem

• Reduced levels of soil organic matter could also alter nutrient cycling
• This could happen because the OM from the harvested material does not rot on site
• This is hard to measure and little is known (Johnson 1983)
Conclusions

- Nutrient impoverishment may be relevant on some sites
 - Nutrient poor outwash sands
 - Shallow soils
 - Some organic soils
- On many sites, this is less of a concern