A Presentation of the 2013 Drainage Research Forum

November 14, 2013
SDSU Extension Regional Center
Sioux Falls, SD
Situation

• To reduce the size of the Gulf of Mexico Hypoxic Zone - at least 45% reductions in both riverine total nitrogen flux and riverine total phosphorus flux are called for.

• To achieve these reductions as well as local water quality goals will require a combination of practices implemented at the watershed scale.

• Nitrate removal wetlands are a watershed scale practice that have been shown to be effective in removing nitrate.

• Optimal drainage capacity has the potential to reduce surface runoff, phosphorus & other SRO contaminants.

• Market driven, public/private partnerships will be essential to achieve these nutrient reductions at full landscape scale.
Current Conditions

• Deteriorating drainage infrastructure that will need replacement largely over the next 10-30 years
• Farmed wetlands provide lowered crop production and little wetland function compared to original state
• Most farmed wetlands have drainage installed, but the drainage system capacity is too low to provide adequate drainage for good crop growth
• Farmed wetlands result in high losses of nitrogen fertilizer as result of denitrification
• “Worst of both worlds”- Poor crop production- poor wetland function
Future Vision

- “Engineer” the watershed for better drainage and wetland function
- Set aside areas where wetlands can be established at the discharge end of the watershed for better wetland function as well as water quality renovation
- Allow these wetlands to be used for mitigation of farmed wetlands in the watershed
- Allow higher capacity outlet systems to be installed to provide better crop production
- “Best of both worlds” - a win-win situation
Research/Science Basis

• Water Quality & Drainage Studies – Since 1988, Fees on Sale of Ag Chemicals
 – Gilmore City Research Station & Outlying Farms
 – Ames Research Farm
 – Pekin Farm

• EPA Grant $1 million – “Integrated Drainage-Wetland Systems for Reducing Nitrate Loads from Des Moines Lobe Watersheds”
Development Team

Dr. James Baker, ISU (emeritus) & IDALS
John Chenoweth, NRCS (retired)
Dr. Bill Crumpton, ISU
Don Etler, IA Drainage District Assn
Dr. Matt Helmers, ISU
Dean Lemke, IDALS
Dr. Stewart Melvin, ISU (emeritus) & IDALS
John Torbert, IA Drainage District Assn
Nitrate Removal by Targeted Wetland Restorations in Agricultural Watersheds
Iowa Conservation Reserve Enhancement Program

Drainage District Boundary

Hydric Soils

Subsurface Tile Drain

CREP Wetland
Monitoring wetland performance

Field sites instrumented for automated sampling and flow measurement

VH Wetland
Monitoring wetland performance

Observed Nitrate concentrations and flow rates for VH Wetland in 2004

VH Wetland
Observed and modeled wetland performance

W.G. Crumpton, Iowa State University
Iowa CREP – Current Status

• 66 wetlands restored/constructed
• Currently over $7M ‘waiting list’ of landowners for enrolling
• 84 wetlands restored, under construction or design
 – 840 acres total wetland pool
 – Remove 40-90% of nitrate from 86,100 acres
 – Annually remove over 1,000,000 lbs N
 – Estimated nitrate removal over practice lifetime is 90,000 tons
 – Nitrogen removal cost $0.23/lb, below current cost of fertilizer N
Drainage Design

• Majority of Des Moines Lobe is artificially drained with tile drainage systems installed in early to mid-1900’s

• From surveys performed in 1980’s many drainage systems have a drainage coefficient of <0.25 in/day (some <0.10 in/day)

• Modern drainage systems will be designed with a drainage coefficient of 0.5-1.0 in/day
Impacts of Drainage Design

Estimated Nitrate-N Concentrations
- Subsurface drainage = 13.3 mg/L
- Surface runoff = 1 mg/L

Estimated Total P Concentrations
- Subsurface drainage = 0.1 mg/L
- Surface runoff = 1.6 mg/L

![Graph showing the impact of drainage design on nitrate and phosphorus loss.](image-url)
How much do Under Designed Systems Impact Yield?

These estimates are likely on the conservative side.

Yield impacts may be greater.
Why do we get less surface runoff?
Average Annual Water Balance Averaged over Two Soils (Average rain = 110 cm)

<table>
<thead>
<tr>
<th>Drainage Plan</th>
<th>ET (mm)</th>
<th>Total outflow (mm)</th>
<th>Surface runoff (mm)</th>
<th>Subsurface flow (mm)</th>
<th>Average Water Table Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>690</td>
<td>411</td>
<td>184</td>
<td>227</td>
<td>845</td>
</tr>
<tr>
<td>Improved</td>
<td>667</td>
<td>433</td>
<td>73</td>
<td>361</td>
<td>965</td>
</tr>
</tbody>
</table>
Integrated Drainage and Wetland Landscape Systems

• Extent of drainage will not be increased

• Drainage district main network redesigned to modern drainage coefficient to allow for greater infiltration of water and thereby increased crop productivity

• Nutrient removal wetlands incorporated below outlets and utilized to mitigate for “impacts” to continuously-cropped farmed wetlands
Challenges

• General societal opposition to agricultural drainage
 – No longer accepted by the public as a conservation practice
 – Cited as primary cause for flooding events by urban/environmental groups
 – Reluctance to accept that environmental and agricultural benefits can coincide

• Misunderstanding of mechanics of agricultural drainage
 – Perception that drainage greatly increases total discharge from a watershed when it is actually more equivalent to reapportioning the flow between surface and subsurface pathways
 – Drainage capacity perceived to be the normal flow rate
Existing Drainage System
- Reduced infiltration capacity in soil
- No N removal wetland

Modern Drainage System with Wetland
- 50% reduction in surface runoff
- Small % increase in subsurface drainage
- 40-70% N reduction in wetland
Water Quality and Quantity Impacts of Agricultural Subsurface Drainage

• Fausey, Brown, Belcher and Kanwar (1995) reviewed 150+ journal articles and published reports
• From this literature review, water quantity and quality impacts related to subsurface drainage as % change are summarized
Impacts of Agricultural Subsurface Drainage as % Change – Summary of 150+ Journal Articles/Reports

Soil-Bound Nutrients

• Reduction in phosphorus lost by water erosion ranged from 0-45%
• P reduction related to reductions in total soil loss, total runoff, peak runoff rate
• Reduction in soil-bound nutrients ranged from 30-50%
Impacts of Agricultural Subsurface Drainage as % Change – Summary of 150+ Journal Articles/Reports

Water & Sediment

• Reduction in total amount of runoff that leaves site as overland flow ranged from 29-65%
• Reduction in peak overland flow runoff rate ranged from 15-30%
• Reduction in total sediment lost by water erosion ranged from 16-65%
Part 650, National Engineering Field Handbook, USDA-NRCS

- Artificial drainage acts to lower soil erosion by increasing the movement of water through the soil profile and thus reducing runoff.
- Subsurface drainage is a management tool that reduces the potential for erosion and phosphorus enrichment of surface water from agricultural activities.
Challenges

- Wetland and Stream Mitigation
 - Acceptance of multi-purpose wetlands to mitigate for continuously-cropped farmed wetlands
 - Stream mitigation implications
 - Example of water quality wetland replacing a portion of a 100-year-old man-made ditch being deemed an impact that must be mitigated
 - Man-made conveyances being forced to mitigate to a “natural” stream state to satisfy regulators
Pothole Depression Typical of Farmed Wetland May 2007

Same Pothole Depression June 2007
CREP Wetland
Challenges

• Regulatory
 – Cumbersome permitting process for individual permits
 – Wetland determinations
 • Ability of DDs to obtain NRCS determinations
 • Corps acceptance of NRCS determinations >5 years old
 • Ability to substitute NRCS determinations for private delineations
 • Jurisdictional Determination process
 – Forthcoming proposed rulemaking on defining waters of the US subject to CWA jurisdiction
 • Significant nexus alone or in combination
 • Chemical, physical, biological effect
• “Waters...have a significant nexus if they alone or in combination with other similarly situated waters in the same watershed have an effect on the chemical, physical, or biological integrity of traditional navigable waters or interstate waters that is more than “speculative or insubstantial.”

• “An unbroken surface or shallow sub-surface hydrologic connection to jurisdictional waters may be established by a physical feature or discrete conveyance that supports periodic flow between the wetland and a jurisdictional water.”

• “The hydrologic connection need not itself be a water of the U.S.”
Draft CWA Guidance Excerpts

• “Functions of waters that might demonstrate a significant nexus include sediment trapping, nutrient recycling, pollutant trapping and filtering, retention or attenuation of flood waters, runoff storage, and provision of aquatic habitat.”

• “A hydrologic connection is not necessary to establish a significant nexus, because in some cases the lack of a hydrologic connection would be a sign of the water’s function in relationship to the traditional navigable water or interstate water, such as retention of flood waters or pollutants that would otherwise flow downstream to the traditional navigable water or interstate water.”
Draft CWA Guidance Implications

• Water quality standards including future nutrient standards will apply to waters of the U.S., which through this guidance are moved closer to and in some circumstances into cropped fields and road ditches adjacent to cropped fields.

• Guidance moves jurisdictional waters of the U.S. into cropped fields upstream of where off-field buffers can be placed, rendering these technologies inoperable to achieve future water quality nutrient standards.
Opportunities

Environmental, Wildlife and Recreation

• **Decreased**
 • nitrogen transport to water resources
 • surface runoff, soil erosion, phosphorus transport
 • pesticide and pathogen delivery to water resources
 • N_2O greenhouse gas emissions

• **Increased**
 • wetland function and wildlife habitat
 • potential to move to less intensive tillage
 • landscape diversity
 • recreational opportunities
Opportunities

Environmental, Wildlife and Recreation

- Increase the number of potential sites for nutrient removal wetlands by integrating drainage system re-design with wetland development to overcome topographic limitations of current retrofit approach.

- Increase the number of high-value wetlands and the total wetland functional values across the region. These wetlands would serve the multi-purpose functions of enhanced water quality, mitigation for the conversions of nearby low-value wetlands and increased wild life habitat and recreation.
Calhoun County – Potential Nitrate Removal Wetlands
Opportunities

Food and Bio-energy Feedstock Production

• 7-20% increase in grain stocks available to reduce the consumer costs of food and bio-energy feedstocks across the targeted landscape.

• Optimize production and crop yields in lands that have been and will continue to be continuously-cropped.

• Reduce market economic pressures to convert highly-erosive lands that are currently in CRP, pasture, or wildlife use to row-crop production
Opportunities

Economic Benefits and Costs

- At the 7-20% increases in annual crop yields resulting from improved subsurface drainage predicted by ISU studies, annual increases in net income to growers from crop production across the 6 million acres of the Des Moines lobe estimated close to $500 million/year.

- Reduced public sector cost of developing nitrate-removal wetlands under the Iowa CREP by shifting a portion of the expenses to private landowners, driven by the enhanced economic returns from corn and soybean production from bio-energy and global food demand for grain.

- Economic returns from enhanced wildlife, waterfowl and associated recreation returns from increased wetland function and habitat values.
Example Yield Increases

<table>
<thead>
<tr>
<th>District Size (acres)</th>
<th>Outlet Capacity (in/day)</th>
<th>Relative Yield</th>
<th>Inc in Rel. Yield if 0.5 in/day coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1860</td>
<td>0.22</td>
<td>94</td>
<td>2</td>
</tr>
<tr>
<td>1025</td>
<td>0.18</td>
<td>92</td>
<td>4</td>
</tr>
<tr>
<td>1920</td>
<td>0.1</td>
<td>79</td>
<td>17</td>
</tr>
<tr>
<td>1600</td>
<td>0.09</td>
<td>76</td>
<td>21</td>
</tr>
<tr>
<td>2000</td>
<td>0.05</td>
<td>56</td>
<td>41</td>
</tr>
<tr>
<td>1920</td>
<td>0.13</td>
<td>86</td>
<td>10</td>
</tr>
<tr>
<td>1760</td>
<td>0.11</td>
<td>82</td>
<td>15</td>
</tr>
<tr>
<td>1120</td>
<td>0.44</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>1120</td>
<td>0.24</td>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>960</td>
<td>0.27</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>400</td>
<td>0.25</td>
<td>95</td>
<td>1</td>
</tr>
</tbody>
</table>
What Might $ Impacts of Optimized Drainage Systems be on a County?

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres in DD</td>
<td>250,411</td>
</tr>
<tr>
<td>Yield Increase (%)</td>
<td>7.7</td>
</tr>
<tr>
<td>Base Corn Yield</td>
<td>190</td>
</tr>
<tr>
<td>Base Soy Yield</td>
<td>55</td>
</tr>
<tr>
<td>Corn Price</td>
<td>$4.95</td>
</tr>
<tr>
<td>Soy Price</td>
<td>$13.20</td>
</tr>
<tr>
<td>Acreage in corn (%)</td>
<td>65</td>
</tr>
<tr>
<td>Acreage in Soy (%)</td>
<td>35</td>
</tr>
</tbody>
</table>

Total Annual Increase in Corn Yield (bushels)	2,381,283
Total Annual Increase in Soy Yield (bushels)	371,172
Annual Increase in Income ($)	$16,686,819
What Might $ Payback of Optimized Drainage Systems be to Landowners?

Estimated cost of optimized drainage mains: $600/acre
Estimated cost of “status quo replacement” drains: 480/acre
Optimization cost: 120/acre
Estimated net income increase*: 60/acre/yr
Projected payback for drain optimization**: 2-3 yrs

*Basis
 7.7% yield increase
 190 bu corn @ $5/bu
 55 bu soy @ $10/bu

**Note - does not include wetland mitigation costs
Economics of Drainage Improvements

- Payback on tile investment can be achieved utilizing increased revenue only
- Payback period utilizing increased revenue only is relatively short (10-20 years)
- Payback period is much shorter than the 125+ year service life of the new drainage system
- Drainage warrants allow for up to 20-year financing, longer than typically needed to payback from increased revenue
Opportunities

Market Driven Frameworks & Partnerships

- Support voluntary, incentive, and market-based efforts for reducing nutrient loading and achieving enhanced environmental stewardship.
- Improve the availability and affordability of mitigation for the conversions of farmed wetlands in and near the treated watersheds by authorizing the banking and marketing of treatment wetland functional values.
- Utilize “market-driven” economic returns to support a portion of the cost for water quality improvement of strategically-located and designed nutrient-removal wetlands. This portion would be paid by landowners through mitigation of existing farmed-wetlands.
Opportunities

Market Driven Frameworks & Partnerships

• Potential to implement “Water Quality Trading” on a market-driven basis within small watersheds by facilitating landowners “trading” their nutrient contributions to water resources from croplands, to other lands in the watershed that perform “nutrient removal” function through strategically-targeted nutrient removal wetlands.

• Engage and empower the existing, locally-led watershed management institutional capacity of Iowa’s 3,000 drainage districts to develop, manage and maintain the necessary landscape modifications
Opportunities

Demonstration of a potential model for adoption across the U.S. corn belt for reducing nitrate export to downstream water resources, addressing Gulf hypoxia nitrogen reduction targets and protecting drinking water.
Summary

- Flat, low-erosion drained landscapes are environmentally-preferred for production of row crops
- Over the next decades the existing drainage systems in Iowa’s drainage districts will be replaced due to age and structural failures
- Critical Issue – will these replacement systems be designed to maintain the ‘status quo’ or to optimize these landscapes for both environmental benefits and crop production?
Iowa Wetland Landscape Systems Initiative

For More Information
http://iowalandscapeinitiative.com/