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“One of the clearest trends in the United States observational
record is an increasing frequency and intensity of heavy
precipitation events... this trend is statistically significant.”

Increases in Amounts of Very Heavy
Precipitation (1958 to 2007)
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Wet Years more common in lowa since 1950

Total Annual State-Wide Average Precipitation (inches)
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Standardized Departure

Departures from mean annual

streamflow at 400 sites in the U.S. -
McCabe and Wolock, 2002
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* 50% of the
conterminous U.S.
exhibited increasing
discharge between 1940
and 1999 (most
pronounced trends in the

central U.S.) - Lins and
Slack, 2005

* Most notable since

1970s - McCabe and
Wolock, 2002



Objectives

1) To determine trends in hydrologically relevant
variables for watersheds in lowa

— Streamflow, soil moisture, snow, frozen ground

- Many hydrologic variables are poorly observed
- Can we rely on models to fill in the blanks?

2) To determine the ability of a commonly used
hydrologic forecast model to reproduce
observed trends



Methods



10 lowa study basins
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EXperiment (MOPEX) database (NWS and USGS data)
e ~ 50 years of data for each site (1948-2003)




Analyzed observed and modeled (*) data

e Mean daily flows
e 7-day low flows (summer and winter)

— Lowest flows during 7 consecutive days
* Peak flows from rain and snow
 Number of high flow days
* Number of extreme flow days
 Monthly subsurface moisture storage*

— As a percent of total
 QOccurrence of show melt*
e Occurrence of frozen ground*



Characteristics of streamflow
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We do not use the term flood

 Flood: an overflow or inundation that comes
from a river or other body of water, and
causes or threatens damage.

— USGS Professional Paper 1775

* Floods are often a stage measurement, which
are difficult to compare across time due to
changes in channel



Visual analysis

* Plots of 10-year moving average
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Trend Analysis

* Trend significance: Mann-Kendall (MK) test (mann, 1945; kendall, 1975)

— Extensively used in similar hydrologic studies (Hirsch et al., 1982,
Lins and Slack, 1999; Burn et al., 2004)

— Requires the data be serially independent: Trend-Free Pre
Whitening procedure (TFPW)

* MK test with TFPW procedure:

1. Slope of the data estimated using Thiel-Sen Approach
which limits influence of outliers (thiel, 1950; sen, 1968)

If slope differs from zero, it is removed from the series

Next, the (lag-1) correlation coefficient is removed from
the detrended series

4. Trend is added back into the data set and the MK test is
applied to the blended series



MK Test

Mann-Kendall test where:

n—-1 n _|_1 9 > U
S = z Z Sgn(X; — X;) Sgn(@)=40 if6=0

i=1 j=i+1 —1 8 <0

n = number of values in the data set
if n> 8, Sis (approximately) normally distributed allowing for computation of Z:

S—1 )
S>0
Jvar(S)
Zs = < 0 forS=20
S+1 ]
§$<0
Jvar(S)

* Positive(negative) value of Z represents an upward(downward) trend

* If p-value < significance level, reject the null hypothesis that a trend does
not exist

*Used a significance level of 10%



Observed data trends:
streamflow



Average daily streamflow
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Average daily streamflow +51%
8 sites had positive MK trends




7-day summer low flows

Discharge (cms)
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7-day low flows +71% (August-September)
Flood years are influencing this percentage
3 positive MK trends, 7 negative MK trends




Winter 7-day low flows increased +63%, but only 2
sites had positive trends

Low flow results are in contrast to other studies that
found significant upwards trends in low flows in the

Midwest (Douglas et al., 2000; Schilling and Libra, 2003; Lins and
Slack, 2005; Novotny and Stefan, 2006; Juckem et al., 2008).

Partly due to de-trending procedure. Without it, 5
sites w/positive trends in summer and winter

Also a lot of variability in low flows due to flood
events.



Number of high flow days

Number of days
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+10 high flow days per year
9 positive MK trends, 1 negative MK trend




Number of extreme flow days
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+2.5 extreme flow days per year
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Summary of MK test for observed streamflow

Sites with trends

positive negative

Mean daily discharge 8 2
7-day summer low flow 3 7
7-day winter low flow 2 8
Peak flow from rain 8 2
# High flow days 9 1

# Extreme flow days 3 7



Sites with
statistically

Sites with trends significant trends

positive negative positive negative

Mean daily discharge 8 2 4 0
7-d. summer low flow 3 7 1 5
7-d. winter low flow 2 8 0 5
Peak flow from rain 8 2 2 0
# High flow days 9 1 5 0

# Extreme flow days 3 7 Q )




Annual precipitation (inches)

e Results make sense
given precipitation
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Trends in modeled data



National Weather Service Sacramento Soil Moisture
Accounting Model (SAC-SMA) modeling system
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* Modeling system used
for short- and long-
term streamflow
predictions across US

* Continuous,
conceptual rainfall-
runoff model

- 2 soil zones

* Empirically-based
snow model simulates
accumulation and melt



Conceptual models require calibration

Measured Measured
Inputs Outputs

B Rea/ World IR

error

MODEL (0) Suted

Outputs
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Optimization
Procedure

"Calibration: constraining the model to be consistent with observations”



e Parameters are considered to be invariant in
time
— Modeling system cannot account for changes in

basin characteristics over time, i.e. land use
changes

* Calibrated for 3 periods -> 3 parameter sets:
- 1958-1970
- 1970-1982
- 1988-2000



Model Calibration Results

Mean values

Root Mean Nash
Squared Error | Percent | Sutcliffe
(cms) Bias (%) |Efficiency
1958-1970 16.8 -7.6 0.64
1970-1982 17.1 -9.6 0.63
1988-2000 16.4 -1.8 0.66

* Ran 3 calibrations
*Results similar for each period
* Model underestimating flow on average

* Nash-Sutcliffe Efficiency is rather low
-timing of peaks off
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Modeled data trends: subsurface

moisture, snow, frozen ground
(58 — 70 calibration)



Mean Monthly Subsurface Moisture — moving average
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*Trends follow those found in precipitation analysis for the Midwest
(Angel and Huff, 1997; Karl et al., 1995; Davis-Todd et al., 2006)
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* Increasing potential for runoff/flooding throughout the year

* All simulations showed increasing subsurface moisture storage



Mean Monthly Subsurface Moisture Trends

# sites
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Days with frozen ground
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* -6 fewer days with frozen ground

Annual State-Wide Average of Number of Frost-Free Days
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Simulated cold season shifts

# days frozen ground 0/10 0/10 -6.1 days
First day frozen ground 0/10 0/6 i -2.6 days
Last day frozen ground 0/10 0/10 _ -9.2days
# snow cover days [ 3/7 0/0 2.0 days

First day snow cover 0/10 0/10 i -11.1 days
Last day snow cover 0/10 0/6 i -2.53 days
# bare ground days 8/2 2/0 6.57 days

* Trend towards earlier cooling in the fall, earlier warming in

the spring

*Frei et al. (1999) that show the snow season is beginning
earlier and ending sooner.




Model evaluation



Remember model parameters are considered to be
invariant in time (assumes stationarity)

lowa land development

- 70-80s shift in cropping to mainly
soybeans and corn

- Changes in conservation/land
management

- Artificial drainage

Changes in land cover and land
management shown to impact the
hydrologic response of Midwestern

watersheds - Tomer et al., 2005; Jukem
et al., 2008; Mao and Cherkauer, 2009




 Our model cannot explicitly account for changes in
land use

— implicitly accounted for in calibration

— can we use these models to derive land use
impacts?

* We ran the model for the historical time period
(1948-2003) using each calibrated parameter set:

o et L, watershed conditions for
- 1970-1982 these time periods &
- 1988-2000 1948-2003 climate



Discharge (cms)

Simulated mean daily discharge
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Simulated mean daily streamflow

Discharge (cms)
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Match to observations varies
throughout period

- We would expect the best
match to observations
during the calibration
period

e Variations outside of
calibration window due to
changes in watershed?



Summary of modeled streamflow trends

Positive MK trend

Change in 10-yr running

(# sites) average
58-70 70-82 88-00| 58-70 70-82 88-00
Mean daily flow 7 8 9 27% 43% 41%

High flow days 3 4 4
Extreme fl. days 4 2 4

+1.5 days +6 days /+20 days
+1.7 days +2 days| +19 days

e About as many basins with trends

* Not as many with significant trends

* Model sensitive to calibration period:
- 88-00 many more extreme flow days
- Does this indicate that under current watershed
conditions we should expect more extreme events?



Summary and conclusions



* QOur analysis shows while discharge is increasing,
the number of extreme flow days per year is not.

— Similar results were found for basins in Minnesota - Novotny
and Stefan, 2007

— Only a few U.S. sites had increasing maximum
streamflows, more sites had increasing minimum and

median streamflows - Lins and Slack, 1999; Douglas et al., 2000; McCabe
and Wolock, 2002; Kalra et al., 2008

 We also found that the low flows were increasing

— The popular idea that extremes in streamflow will
become more frequent is not supported by the evidence
that shows a decrease in the range between low and high
ﬂOWS - Lins and Slack, 2005



Trends were seen in many of the variables analyzed,

although they were not all statistically significant at a
10% level

 The strongest trends found for:
— Increasing mean annual flow
— Decreasing number of frozen ground days
— Shift to earlier dates in cold season onset and conclusion

— Increasing monthly mean soil moisture (esp. winter/spring)

MK test did not reveal increasing trend in low flows
in these basins

- High variability

- Need different statistical approaches?
K. Franz, 2010



* SAC modeling system responsive to long-term climate
change

 Some trends not as strong as in observed
* Limited treatment of land use and evapotranspiration

 Model was evaluated for three calibration periods

— Does land use explain some of the trends and
discrepancies in observed and simulated streamflow?

— How much does land use impact the ability to use the
model for climate change analysis?

* Potentially limited application for long-term analysis
— Caveat: model calibration is sensitive to climate as well



Future Work

Better correlation between changes in precipitation
and streamflow, and land use and streamflow

Conduct study using an ensemble of hydrologic
models to assess the influence of model structure on
soil moisture, snow and frozen ground results

Test alternative methods for evaluating trends

Investigate relationships between trends (i.e. frozen
ground and winter soil moisture)
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Questions?

kfranz@iastate.edu



