Fertilizing with Sulfur and Putting Together a Corn/Soybean Fertility Program

Daniel Kaiser
U of M Twin Cities
612-624-3482
dekaiser@umn.edu
Sulfur Response

• Yield responses are increasing-Why?
 – Sulfate deposition have decreased
 – Sulfur in fertilizer sources (other than S fertilizers) and pesticides have decreased
 – Less manure
 – More crop residues

• What is the most important factor?
Corn Yield Response to Sulfur Fertilizer
20 Trials in Northeast IA, 2007 (Sawyer and Lang)

Sulfur Fertilizer Rate
- **10 lbs S/ac**
- **20 lbs S/ac**
- **40 lbs S/ac**

Soil Texture:
- **ls** = loamy sand
- **sl** = sandy loam
- **l** = loam
- **sil** = silt loam

Soil Organic Matter, %
- **Sp**
- **Sp**
- **F**
- **Di**
- **O**
- **O**
- **CF**
- **K**
- **S**
- **R**
- **K**
- **K**
- **Dr**
- **F**
- **F**
- **F**
- **D**
- **D**
- **D**
- **D**
- **F**

Soil Texture
- 0.8
- 0.9
- 1.4
- 1.1
- 1.1
- 0.9
- 2.5
- 2.0
- 2.6
- 2.7
- 2.0
- 3.4
- 1.5
- 2.1
- 2.1
- 2.3
- 2.9
- 2.8
- 2.7
Sulfur Recommendation Update
When SOM(0-6") ≤ 2.57: $20.7 + 62.3x - 12.1x^2$

$r^2 = 0.38$, $P \leq 0.0001$

These points deleted

Albert Lea 2009
Clarkfield 2008
Clarks Grove 2008
Renville, MN: June 3, 2009
3rd year corn no current manure or S history
Harps/Okaboji Complex: 5.1% SOM (0-6”)
Source: Google Earth
**Response to 10 lbs is significant at \(P \leq 0.10 \).
Sulfur Timing and Rate Study 2010

Otisco MN 2010
Corn Following Corn

Sulfur Applied Broadcast at Planting and at V3-V4

Kaiser U of M 2011
Renville 2010 Data
Corn Yield Data

Relative Corn Yield (%)

2009 Sulfur Application Rate (lbs. S ac\(^{-1}\))

RelYLD = 82.9 + 1.42(rate) - 0.0258(rate)\(^2\)

\(R^2=0.98\ P<0.02\)

Plateau ~ 25 lbs

SoilS = 4.42 + 0.04x

\(R^2=0.89\ P<0.02\)
2008-2010 U of M Studies

• Sulfur may be available for more than 1 years crop
 – Soil texture is important for carryover

• Rate data has been inconclusive
 – 10-15 lbs has been adequate
 – 20-25 lbs has been needed at times

• Sulfur can be applied up to V3-V4
 – Grain moisture may be affected

• Guidelines may vary by previous crop!!!
N, P & S fertilization of continuous corn

<table>
<thead>
<tr>
<th>No.</th>
<th>APP, 10-34-0 Rate gal./A</th>
<th>Placement</th>
<th>UAN, 28-0-0 Rate gal./A</th>
<th>Placement</th>
<th>ATS, 12-0-0-26 Rate gal./A</th>
<th>Placement</th>
<th>N+P+S Application rate lb N+P₂O₅+S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>---</td>
<td>0</td>
<td>---</td>
<td>0</td>
<td>---</td>
<td>0+0+0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>---</td>
<td>0</td>
<td>---</td>
<td>2</td>
<td>Surface dribble</td>
<td>3+0+5.8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>---</td>
<td>0</td>
<td>---</td>
<td>4</td>
<td>Surface dribble</td>
<td>5+0+11.5</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>---</td>
<td>8</td>
<td>Surface dribble</td>
<td>0</td>
<td>---</td>
<td>24+0+0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>---</td>
<td>8</td>
<td>Surface dribble</td>
<td>2</td>
<td>Surface dribble</td>
<td>27+0+5.8</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>---</td>
<td>8</td>
<td>Surface dribble</td>
<td>4</td>
<td>Surface dribble</td>
<td>29+0+11.5</td>
</tr>
<tr>
<td>7</td>
<td>4 In furrow</td>
<td>0</td>
<td>---</td>
<td>0</td>
<td>---</td>
<td>5+16+0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4 In furrow</td>
<td>0</td>
<td>---</td>
<td>2</td>
<td>Surface dribble</td>
<td>7+16+5.8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4 In furrow</td>
<td>0</td>
<td>---</td>
<td>4</td>
<td>Surface dribble</td>
<td>10+16+11.5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4 In furrow</td>
<td>8</td>
<td>Surface dribble</td>
<td>0</td>
<td>---</td>
<td>29+16+0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4 In furrow</td>
<td>8</td>
<td>Surface dribble</td>
<td>2</td>
<td>Surface dribble</td>
<td>31+16+5.8</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4 In furrow</td>
<td>8</td>
<td>Surface dribble</td>
<td>4</td>
<td>Surface dribble</td>
<td>34+16+11.5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4 In furrow</td>
<td>0</td>
<td>---</td>
<td>1</td>
<td>In furrow</td>
<td>6+16+2.9</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4 In furrow</td>
<td>8</td>
<td>Surface dribble</td>
<td>1</td>
<td>In furrow</td>
<td>30+16+2.9</td>
<td></td>
</tr>
</tbody>
</table>

Funding provided by AFREC and Fluid Fertilizer Foundation
June 21, Waseca

193 bu/A, 21%

209 bu/A, 16%
0 gal/A 10-34-0
8 gal/A UAN S. band
4 gal/A ATS S. band
Corn grain moisture and yield, plant height at V7 and relative leaf chlorophyll at VT at Waseca

<table>
<thead>
<tr>
<th>Trt</th>
<th>Rate / placement of fert.</th>
<th>Grain H₂O</th>
<th>Grain Yield</th>
<th>Plant height</th>
<th>Leaf Chloro</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>------ gal / acre ------</td>
<td>%</td>
<td>bu/A</td>
<td>inch</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>0, In-F 0, SB 0, SB</td>
<td>20.7</td>
<td>202</td>
<td>28.4</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>4, In-F 0, SB 0, SB</td>
<td>19.0</td>
<td>207</td>
<td>32.9</td>
<td>92</td>
</tr>
<tr>
<td>13</td>
<td>4, In-F 0, SB 1, In-F</td>
<td>18.6</td>
<td>219</td>
<td>34.7</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>4, In-F 0, SB 2, SB</td>
<td>18.2</td>
<td>223</td>
<td>35.0</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>4, In-F 8, SB 0, SB</td>
<td>18.8</td>
<td>212</td>
<td>34.9</td>
<td>92</td>
</tr>
<tr>
<td>14</td>
<td>4, In-F 8, SB 1, In-F</td>
<td>17.9</td>
<td>209</td>
<td>35.0</td>
<td>93</td>
</tr>
<tr>
<td>11</td>
<td>4, In-F 8, SB 2, SB</td>
<td>16.8</td>
<td>210</td>
<td>37.1</td>
<td>97</td>
</tr>
</tbody>
</table>

Average LSD (0.10): 1.1 10 1.4 2

Funding provided by AFREC and Fluid Fertilizer Foundation
Corn grain moisture and yield, plant height at V7 and relative leaf chlorophyll at VT at Waseca

<table>
<thead>
<tr>
<th>Main effects of trts 1-12</th>
<th>Grain H₂O %</th>
<th>Grain Yield bu/A</th>
<th>Plant height inch</th>
<th>Leaf Chloro %</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP (10-34-0) in-furrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>18.6 a</td>
<td>214 a</td>
<td>32.7 b</td>
<td>95 a</td>
</tr>
<tr>
<td>4 gal/A</td>
<td>17.7 b</td>
<td>214 a</td>
<td>35.3 a</td>
<td>96 a</td>
</tr>
<tr>
<td>UAN (28-0-0) surface dribble band</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>18.6 a</td>
<td>216 a</td>
<td>32.4 b</td>
<td>95 b</td>
</tr>
<tr>
<td>8 gal/A</td>
<td>17.7 b</td>
<td>212 a</td>
<td>35.5 a</td>
<td>96 a</td>
</tr>
<tr>
<td>ATS (12-0-0-26) surface dribble band</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>19.5 a</td>
<td>209 b</td>
<td>32.5 b</td>
<td>91 c</td>
</tr>
<tr>
<td>2 gal/A</td>
<td>18.0 b</td>
<td>218 a</td>
<td>34.6 a</td>
<td>96 b</td>
</tr>
<tr>
<td>4 gal/A</td>
<td>17.0 c</td>
<td>215 a</td>
<td>34.8 a</td>
<td>99 a</td>
</tr>
</tbody>
</table>

Funding provided by AFREC

J. Vetsch – U of M SROC
2010 N, P & S for cont. corn summary

• One year (two site) data
• Excellent visual (early growth, vigor, and color) response to treatments at Waseca
• Sulfur fertilization alone increased yield 6–9 bu/A at Waseca.
• N, P, and S fertilizers enhanced early growth and decreased grain moisture at Waseca.

J. Vetsch – U of M SROC
Corn grain moisture and yield as affected by S source, rate, and timing at Waseca in 2010.

<table>
<thead>
<tr>
<th>Sulfur Source</th>
<th>S timing</th>
<th>S rate per acre</th>
<th>Placement</th>
<th>APP rate</th>
<th>Grain H₂O</th>
<th>Grain Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>no</td>
<td>21.0</td>
<td>181</td>
</tr>
<tr>
<td>APP Control</td>
<td>planting</td>
<td>none</td>
<td>In-furrow</td>
<td>4 gal</td>
<td>19.9</td>
<td>183</td>
</tr>
<tr>
<td>ATS (2.8-lb)</td>
<td>planting</td>
<td>1 gal</td>
<td>In-furrow</td>
<td>4 gal</td>
<td>18.2</td>
<td>188</td>
</tr>
<tr>
<td>ATS (5.6-lb)</td>
<td>planting</td>
<td>2 gal</td>
<td>In-fur.&SB</td>
<td>4 gal</td>
<td>16.9</td>
<td>205</td>
</tr>
<tr>
<td>AMS/Gypsum</td>
<td>PP</td>
<td>10-lb</td>
<td>Broadcast</td>
<td>no</td>
<td>16.4</td>
<td>210</td>
</tr>
<tr>
<td>AMS/Gypsum</td>
<td>PP</td>
<td>20-lb</td>
<td>Broadcast</td>
<td>no</td>
<td>16.0</td>
<td>226</td>
</tr>
<tr>
<td>Gypsum</td>
<td>V5</td>
<td>10-lb</td>
<td>Broadcast</td>
<td>no</td>
<td>18.1</td>
<td>222</td>
</tr>
<tr>
<td>Gypsum</td>
<td>V5</td>
<td>20-lb</td>
<td>Broadcast</td>
<td>no</td>
<td>17.2</td>
<td>224</td>
</tr>
<tr>
<td>ATS (10-lb)</td>
<td>V5</td>
<td>3.5 gal</td>
<td>Injected</td>
<td>no</td>
<td>17.3</td>
<td>209</td>
</tr>
</tbody>
</table>

LSD (0.10): 1.5 18

J. Vetsch – U of M SROC
Residue Levels and Sulfur Response

• Does the type of residue matter?
• C:S ratios (source Soil Fertility and Fertilizers 7th ed.)
 – <200:1 – mineralization
 – 200-400:1 no change
 – >400:1 - immobilization
• 2008 data – crop stover
 – Albert Lea, MN R6 Corn: 333:1
 – Clarkfield, MN R6 Corn: 151:1
 – Lewiston, MN R8 Soybean: 123:1
 – Hanska, MN R8 Soybean: 125:1
 – Strathcona, MN Wheat: 286:1
 – Perley, MN Wheat: 291:1
Residue and Response

- Amount and type of residue is important
- Residue likely is the reason for sulfur responses increasing
 - Corn and wheat residue may not mineralize S
 - Soybeans likely will
- Soil organic matter is important in S mineralization
 - In cont. corn thing become fuzzy
 - Clearly the important factor in SB rotations
Where Should I Apply?

• Broadcast has the least risk of damage
• Ammonium Thiosulfate can be banded
 – Better if placed away from the seed
• Am Thio placed with UAN may have some inhibition effects for nitrate conversion
 – Not as big as other N inhibitors
 – Ammonium thiosulfate is not the same as ammonium sulfate (dry)
In-Furrow ATS - Corn Emergence
14 days after initial emergence

Nitrogen Rate Applied (lbs N/ac)

Percent Corn Emergence (% of total)

Soil Type
- Le Sueur CL
- Zimmerman FSL
- Port Byron SL

Kaiser U of M 2011
Le Sueur CL – 13 DAE
Zimmerman FSL – 13 DAE

- 0 gal/ac
- 0.76 gal/ac
- 1.89 gal/ac
- 3.79 gal/ac
- 7.58 gal/ac
- 15.1 gal/ac
In-Furrow ATS - Corn Dry Matter Produced
14 Days After Emergence

Nitrogen Rate Applied (lbs N/ac)

Total Above Ground Plant Weight
(mg per flat)

Soil Type
- Le Sueur CL
- Zimmerman FSL
- Port Byron SL

Kaiser U of M 2011
ATS Applied In-Furrow

- Low rates of ~1gpa (3 lbs S) may be okay
 - Still risk some damage
- Emergence data say that higher rates can be used
- Effect on plant growth increased as rates increased
- You can use some in-furrow but you do accept some risk
Current U of M Recs

Where are we at??

- Recommend sulfur on fields with eroded knobs or organic matter <2% and sometimes when <4%
- 10-15 lbs of S was the optimum rate broadcast for 2009
 - Still unsure of this
- Corn on corn we are seeing situations where the organic matter level recs do not hold
 - Recommending S for these fields regardless of soil organic matter levels
- Keeping older guidelines on sandy soils
- No clear recommendation on soil testing for S
Proposed Corn Sulfur Guidelines for Southern Minnesota

<table>
<thead>
<tr>
<th>Broadcast sulfur to apply (lbs S per acre)</th>
<th>0-6” Soil Organic Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation</td>
<td>0-2</td>
</tr>
<tr>
<td>Corn-Corn</td>
<td>20-25??</td>
</tr>
<tr>
<td>Corn-Soybean</td>
<td>10-15??</td>
</tr>
<tr>
<td>Sandy Soils</td>
<td>25</td>
</tr>
</tbody>
</table>

** ??, denotes where we have limited data on response and need more data
Fertilizer Sources

• Any sulfate source should act the same
• Elemental sulfur takes time to become available
 – Better the farther south you go
• Apply the source that makes the most sense
 – Corn – N+S may be a good fit
• Keep on-seed rates low
Can Soybeans Benefit From Sulfur?

Wabasha Co. 2009

20 lbs of N at Planting

20 lbs of N + 25 lbs S at Planting
* Increase was not significant over the control
* Increase was not significant over the control
Plant Early Growth

- Soybean Growth differences were still apparent at the end of the season
 - Corn was not
- The combination of N + S greatly increased growth
- At Hanska all starter treatment advanced maturity
Sulfur Starter Experiment Strip Means
Soybean Sites 2008-2009

Yield Increase Over the Control (bu/ac)

-4 -2 0 2 4 6 8

-4

Vertical Bars Represent Standard Errors of Treatment Means
Sulfur and Soybean

• Potentially could see an yield increase when organic matter <2.0%
• Yield increase may be related to growth increases
• Too much growth may be bad
• Additional nutrients may still come into play
 – K is critical for soybeans
 – Responsive areas are also natively low in K
Sulfur Strategy

• Focusing on corn is the best strategy
• A single year application may have multiple years’ benefits
 – Both for corn and soybeans
• Residue is likely the reason for increasing responses
• Large yield benefits may only be temporary
 – Still need to consider some application in following years
Thank You

Questions?

Daniel Kaiser
University of Minnesota
612-624-3482
dekaiser@umn.edu
http://www.tc.umn.edu/~dekaiser/