Economics of Torrefaction Plants with Integrated Ethanol and Coal Power Plants

ICER13
Seoul, Korea
August 27, 2013
Douglas G. Tiffany
Assistant Extension Professor
ACKNOWLEDGEMENTS

• This research was supported by the Initiative for Renewable Energy and the Environment.
• Torrsys, a subsidiary of Bepex, was the source of most of our torrefaction costs of production.
• Nalladurai Kaliyan and Vance Morey of BBE worked on the engineering and life cycle analysis.
• This project utilizes business modeling designed by Carrie Johnson of ApEc. Doug Tiffany and Won Fy Lee performed additional business modeling.
Today’s Discussion:

• Torrefaction is just starting in N. America to serve European markets and uses to make biofuels.
• Focus on economics for torrefaction plants and the purchasers of their products, which are biocoal, off-gasses or steam from combustion of off-gasses
• Analytical Tools and Assumptions
• Regulations Facing Coal Power Plants
• Modeled Return on Equity (ROE) for Torrefaction Plants, Coal Power Plants and Ethanol Plants Buying Steam from Off-Gasses
• Presentation of Sensitivity Analysis of ROEs of Torref., Power Plants, Ethanol Plants due to Prices of Inputs, Products, Policy Incentives, Penalties
TORREFACTION FOR WOODY OR HERBACEOUS BIOMASS

• Like coffee roasting (in absence of oxygen)
• Roast biomass at (250-320º C) at near zero oxygen to drive off water and VOCs while degrading hemicelluloses to release the heat needed to drive the reaction
• Depending upon initial moisture of biomass, there may be steam available after pre-drying for other purposes or sales.
• Use of inert gases (like CO2), prevents combustion from occurring during roasting phase (15 to 20 minutes)
• Hydrophobic, will not rot or harbor pests like wood pellets, integrates with coal infrastructure, increases energy density
• Brittliness of densified torrefied biomass facilitates grinding at power plants.
• Torrefied biomass can replace coal in combustion or be used as a feedstock for further pyrolysis or gasification.
Mass & Energy Balance of Torrefied Corn Stover

Dry Matter

- 65.6

Energy Content

- 74.5

- 34.4

- 22.5

Lost as off-gas volatiles

biocoal
Schematic of Torrefaction Unit by Agri-Tech
Steps in the Analysis

• Develop spreadsheets to determine costs of converting biomass to biocoal, ethanol plants, coal-fired power plants
• Collect data on delivered biomass and coal costs
• Determine GHG emissions from pulverized coal power plants using various blends of “biocoal”
• Determine ROE of torrefaction plants and plants using products to comply with environmental regulations
• Determine if existing power plants will gradually reduce their GHG emissions by blending torrefied biomass in order to extend their economic lives
Technical Worksheet for Torrefaction

Torrefaction Process by Douglas G. Tiffany 20-Nov-12

University of Minnesota

Biomass with Sale of Steam

| Return on Invested Capital | 16.07% |
| Return on Invested Capital (No Steam) | 6.03% |

Installed Capital Cost

<table>
<thead>
<tr>
<th>Nameplate Annual Output</th>
<th>150,000</th>
<th>Finished Tons</th>
<th>93.2%</th>
<th>Capacity Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed Capital Cost</td>
<td>$328.00</td>
<td>per T of Capacity</td>
<td>$34,200,000</td>
<td></td>
</tr>
</tbody>
</table>

Percent Equity

| Percent Equity | 40% |
| Percent Debt | 60% |

| Interest Rate Charged on Debt | 6% |

Operational Parameters

Dry Matter Remaining

| 70% | BDT/BTD | (60-75%) |

BTUs used for drying at rate of

| 1200 | BTUs/lb. of Water Removed |

BTUs Released by facility per hour

| 95,950,000 | from flow of 13,187 |

Tons of 17% Biomass = 2,873,873 BTUs/T @ 17% Moist.

Feedstock Grinding

| 37.8 | kWh/ T Biomass | 166,601.12 | $ 0.07 |

Torrefaction Reactor Electrical

| 56.25 | kWh/ T BioCoal | 139,800 | $ 0.07 |

Roll Press Briquetting Electrical

| 8.05 | kWh/ T BioCoal | 139,800.00 | $ 0.07 |

Natural Gas for Volatile Combustion

| 0.045 | MMBTUs of NG/T Biomass | $ 5.00 |

Water pumping for BioCoal Quenching

| 0.064 | kWh/ T BioCoal | 139,800 | $ 0.07 |

Fan Cooling of BioCoal Pellets

| 1.091 | kWh/ T BioCoal | 139,800 | $ 0.07 |

Revenues

Biocoal Production

| Biocoal Production | at moisture of 1.10% | 139,800 | K lb of ST/hr | $ 19,572,000 |

Sale of Biocoal (F.O.B.)

| $140.00 | at moisture of 1.10% | 139,800 |

BTUs Remaining After Drying

| 95,950,000 | 84,080 | lb. of Steam/hr |

Steam Price (Per 1,000 lb.)

| $ 5.00 | 8164.32 Hours of Operation |

Total Revenues

| $ 23,004,276 |

Delivered Cost of Biomass

| $ 570.00 | at moisture of 17.00% | 166,601.12 |

Gross Margin

| $ 11,342,197 |

Operating Costs and Depreciation

Salaries and Benefits

| Rate/Fin. Ton | $ 4.50 | $ 629,100 |

General & Administrative

| Rate/Fin. Ton | $ 1.00 | $ 139,800 |

Maintenance Expenses

| Rate/ Fin. Ton | $ 3.20 | $ 447,360 |

Natural Gas Expense

| $ 37,485 |

Electrical Expense

| $ 1,081,369 |

Interest

| Rate/Fin. Ton | $ 8.81 | $ 1,231,200 |

Depreciation (SL) for asset life of 15 years

| $ 16.31 | $ 2,280,000 |

Total Operating Costs and Depreciation

| $ 33.82 | $ 41.82 |

Net Margin

| $ 11,342,197 |

Return on Invested Capital

| $ 39.31 | 16.07% |

| $ 14.76 | 6.03% |
Co-located Advantage for Torrefaction

• After cost of biomass, independent torrre. plant may have costs of production of $42 per finished ton.
• With sales of steam, costs of process, $17 per finished T. of biocoal, a $25/T. advantage.
 ▪ Co-located torrefaction plants can enjoy a 16% ROE vs. 6% ROE over independent plants.
• Require 1.7 tons of 17% biomass to yield 1.0 T. of biocoal D.M.
MAJOR FLOWS OF MATERIALS AND ENERGY

Torrefaction Plant

Corn Stover

Wood

Dryer

Biocoal to Power Plant

Volatile Off-Gasses

Steam

Flue Gases to Dry Wood

Coal Power Plant

Ethanol Plant
Life Cycle Assessment (LCA)

• Determination of GHG emissions associated with the production and use....

• Three Businesses:
 • 150,000 ton/year torrefaction plant
 • 100 MM gpy eth plant co-located w/torref. plant
 • Coal power plant co-firing biocoal

• Sources
 • Bepex
 • USDA, ERS model, Aspen Plus
 • Greet Model, Argonne National Lab
Life-Cycle GHG Emissions of Biocoal vs. Coal

Life-Cycle GHG emission of Biocoal compared to Coal

Coal: 110.6 g/MJ
Biocoal: 11.4 g/MJ
Torrefaction + Ethanol Plant Co-location

A 150,000 ton/year torrefaction plant can produce excess heat in the torrefaction off-gas volatiles, which can meet 42.8% of process energy needs in the ethanol plants.

GHG emission of gasoline

GHG emission of conventional ethanol plant relative to Gasoline(%)

GHG emission of ethanol plant with 42.8% energy from Torref.Plant relative to Gasoline(%)

GHG emission of ethanol plant with 100% energy from Torref.Plant relative to Gasoline(%)

100%

65.90%

60.00%

52.10%
GHG Reductions of Coal PP Co-firing Biocoal

- 8.50% at 10%
- 17.10% at 20%
- 25.60% at 30%
- 85.50% at 100%

Biocoal co-firing percentage
Policy Drivers in the U.S.

EPA Regulations under Clean Air Act rules

- Cross-State Air Pollution Rule (CSAPR), July 2011
- Mercury and Air Toxics Standards (MATS), Dec 2011
- Carbon Pollution Standard, March 2012

State Renewable Portfolio Standard (RPS)

- 29 States have policies designed to increase generation of electricity from renewable resources.
- Require supplying minimum shares of electricity from designated renewable resources
Carbon Taxes around the World

<table>
<thead>
<tr>
<th>Country</th>
<th>Carbon Tax (USD/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden</td>
<td>$150</td>
</tr>
<tr>
<td>British Columbia, Canada</td>
<td>$30</td>
</tr>
<tr>
<td>Finland</td>
<td>$26</td>
</tr>
<tr>
<td>Ireland</td>
<td>$20</td>
</tr>
<tr>
<td>Denmark</td>
<td>$18</td>
</tr>
<tr>
<td>Australia</td>
<td>$15</td>
</tr>
<tr>
<td>California</td>
<td>$10</td>
</tr>
<tr>
<td>Quebec, Canada</td>
<td>$4</td>
</tr>
<tr>
<td>Japan</td>
<td>$3</td>
</tr>
<tr>
<td>India</td>
<td>$1</td>
</tr>
</tbody>
</table>
2009 Delivered Cost of Coal at Power Plants
$/Ton
(Source: U.S. Dept. of Energy)
Assumptions Applied in Workbook

<table>
<thead>
<tr>
<th>Ethanol Plants</th>
<th>Torrefaction Plants</th>
<th>Coal Power Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name Plate Capacity</td>
<td>Number of Torrefaction Trains</td>
<td>Name Plate Capacity (MW)</td>
</tr>
<tr>
<td>100 MM gal/yr. Steam Purch. fr. Torr. plant per 1,000 lb.</td>
<td>2</td>
<td>550 MW</td>
</tr>
<tr>
<td>Factor of Equity</td>
<td>Capacity of Torref. Train (T / Yr.)</td>
<td>Capacity factor</td>
</tr>
<tr>
<td>80% Natural Gas Price Purchased MM BTU</td>
<td>150,000 T</td>
<td>90%</td>
</tr>
<tr>
<td>Factor of Debt</td>
<td>Capacity Factor</td>
<td>RPS requirement</td>
</tr>
<tr>
<td>20% Elec. Purchase from Grid per kWh</td>
<td>93.20%</td>
<td>30%</td>
</tr>
<tr>
<td>Interest Rate on Debt</td>
<td>Factor of Equity</td>
<td>REC price ($ per MWh)</td>
</tr>
<tr>
<td>6% Propane Purchase ($ per gallon)</td>
<td>40%</td>
<td>$0</td>
</tr>
<tr>
<td>Depreciation Method Chosen (SL or DDB)</td>
<td>Factor of Debt</td>
<td>Loan Duration</td>
</tr>
<tr>
<td>SL Denaturant Price /gal</td>
<td>60%</td>
<td>30</td>
</tr>
<tr>
<td>Depreciation based on asset life (years)</td>
<td>Interest Rate Charged on Debt</td>
<td>Deprec based on asset life for SL (years)</td>
</tr>
<tr>
<td>15 Denat /100 gal Anhyd.</td>
<td>6%</td>
<td>35</td>
</tr>
<tr>
<td>Ethanol Price (denat. price at plant) $/gal.</td>
<td>Del. Cost of Bioccoal (per ton)</td>
<td>Income Tax Rate</td>
</tr>
<tr>
<td>$2.25 Ethanol Yield (anhydrous gal per bushel)</td>
<td>2.75</td>
<td>38%</td>
</tr>
<tr>
<td>DDGS Price $/T</td>
<td>Deprec. Method Chosen (SL or DDB)</td>
<td>SO₂ Allowance Market Cost (per ton)</td>
</tr>
<tr>
<td>$290.00</td>
<td>SL</td>
<td>$0</td>
</tr>
<tr>
<td>CO₂ Price sold for Food and Industrial Uses</td>
<td>Price of Bioccoal ($ per Ton)</td>
<td>Price of Electricity (Cents per kWh)</td>
</tr>
<tr>
<td>$10.00</td>
<td>$140.00</td>
<td>7 Cents</td>
</tr>
<tr>
<td>Corn Price ($ per bu.)</td>
<td>Delivered Cost of Biomass</td>
<td>Prod Tax Credit (PTC) per kWh Of Renewable Electricity</td>
</tr>
<tr>
<td>$7.00</td>
<td>$70.00</td>
<td>$0.01</td>
</tr>
<tr>
<td>CO₂ Tax</td>
<td>Moisture of Biomass to be Torrefied</td>
<td>CO₂ Tax(per ton)</td>
</tr>
<tr>
<td>$0</td>
<td>17.00%</td>
<td>$0</td>
</tr>
</tbody>
</table>
BASELINE RETURNS ON EQUITY (ROE) OF BUSINESS ENTITIES ANALYZED

Return on Equity (ROE) 5 Year Average

- Ethanol Plant: 7.64%
- Ethanol Plant + Torr. Steam: 7.79%
- Torrefaction Plant: 4.22%
- Torrefaction Plant + Steam: 11.73%
- Coal Power Plant: 12.37%
- Coal Power Plant + Cofiring: 10.68%
ROE of Torrefaction Comparison: By Delivered Cost of Corn Stover

![Bar chart showing ROE comparison between Torrefaction Plant and Torrefaction Plant + Steam. The chart is labeled with cost levels ranging from $30 to $90 and ROE percentages ranging from -15.00% to 20.00%. Baseline at $70.](chart.png)
ROE Comparisons of Torrefaction & Power Plants By Sale Price of Biocoal

Baseline at $140

- Torrefaction Plant
- Torrefaction Plant + Steam
- Coal Power Plant+Cofiring

© 2012 Regents of the University of Minnesota. All rights reserved.
ROE at Torrefaction Plants Selling Steam and Ethanol Plants Buying Steam as Steam Prices Vary with NG price fixed at $5 per Decatherm

-15.00% -10.00% -5.00% 0.00% 5.00% 10.00% 15.00% 20.00% 25.00%

$2 $3 $4 $5 $6 $7 $8 $9 $10 $15 $20

Baseline at $5

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Ethanol Plant + Torr. Steam Torrefaction Plant + Steam
ROEs of Ethanol & Coal-fired PPlants: By Price of Carbon Tax

- $0
- $5
- $10
- $15
- $20
- $25
- $30

Baseline at $0

Ethanol Plant
Ethanol Plant + Torr. Steam
Coal Power Plant
Coal Power Plant+Cofiring
CO-LOCATED WOOD TORREFACTION PLANT AND COAL POWER PLANT COMPARED TO BASELINE ROE OF CORN STOVER TORREFACTION AND BIOCOAL USING COAL POWER PLANTS

ROEs of Corn Stover Torrefaction Cases, Wood Co-located Torrefaction, and Coal Power Plants Using Coal, Coal + BioCoal and Coal + BioCoal + VOC

- Torref.P (Corn Stover): 4.22%
- Torref.P (Corn.S+Eth._co-location): 11.73%
- Torref.P (Wood+CPP_co-location): 13.25%
- CPP: 12.37%
- CPP+Cofiring: 10.68%
- CPP+Torref.P Co-location: 9.45%
Conclusions

- Torrefaction economics favor use of dry biomass so that more energy from the volatiles can be put to beneficial use.
- Although biocoal can improve emissions of coal-fired power plants, biocoal will not be used unless price of bituminous coal is higher than the U.S. average price of $68 per delivered ton. NG offers a cheaper alternative than coal for environmental compliance at current NG price.
- High CO2 fees & coal prices > ($100/T.) favor torrefaction adoption.
- Power utilities may try to extend the lives of some of their plants by using biocoal to comply with new laws and state renewable stds.
- Biocoal has more favorable attributes for integration with coal infrastructure than wood pellets because it saves freight and is hydrophobic
- Use of torrefaction on wood and use of flue gases for wood drying represent a favorable co-location scenario.
THANK YOU!

Photo by Andritz, (http://www.andritz.com/se-torrefaction)