Institute of Ag Professionals

Proceedings of the

2015 Crop Pest Management Shortcourse &

Minnesota Crop Production Retailers Association Trade Show

www.extension.umn.edu/Ag-Professionals
Do not reproduce or redistribute without the written consent of author(s).
Timing of Nitrogen Application in Corn to Optimize Yields and Minimize Water Quality Concerns

Edwin Lentz, PhD
Today’s Talking Points

• Ohio agriculture
• Thoughts on application time of N
• Ohio research on N application time
Western Half
Most Productive
Crop Land
Compare MN to OH

• More organic matter
• More coarse soils, sands
• Shorter growing season
• Colder soils at planting
• Better natural drainage
• More use of anhydrous ammonia
• More continuous corn
Better Mascot
Historical N Recommendations

1990’s

- Maximum Yield
- Price of N < 20 cents/lb
- More N, cheap insurance
Historical N Recommendations 2000’s

- Maximum Return to N
- Price of N > 40 cents/lb
- Economic optimal rate
- Consider grain price and N price
- Return on investment

N Rate Calculator
N Recommendations Trend 2010’s

- Environmental regulation
- Hypoxia/algae blooms
- Water nitrate warnings

4 Rs
4 Rs

Right Source
Right Rate
Right Place
Right Time
When Is the Best Time?

Fall
Pre-plant
At planting
In-season
Factors Affecting Application Time of N

- Convenience
- Weather
- Soils fit for equipment
- N Source
It’s About Managing Risk

• Production
 – Optimal yield
 – Logistics
 – Enough time to apply to all fields
 – Insure weather windows

• Water Quality
 – N does not leave field
 – No added N with no crop
 – Tight interpretation of the 4Rs
 – Apply to growing crop
Minnesota Naturally Has Lower N Loss Risk

- Anhydrous ammonia
- Good soil organic matter
- Cold soils when no crop
Vulnerable to N Loss
Most to Least

- Urea-ammonium nitrate
- Urea
- Ammonium sulfate
- Anhydrous ammonia
N Sources Compared

• Anhydrous ammon
 – Longest to convert to nitrate N
 – Gas
 – Hazard handling risk
 – More difficult to apply, knife
 – No bulk storage
 – Limited availability

• UAN – 28%
 – Nitrate component may be lost immediately
 – Liquid product
 – Can tank mix other products
 – Application simple
 – On-farm storage
COMPONENTS OF 28% SOLUTIONS

- Ammonium Nitrogen
- Nitrate Nitrogen
- Urea
When Does the Corn Plant Need Nitrogen?
NITROGEN ACCUMULATION - CORN

% of Total Uptake

VE V6 V12 V18 R2 R5 R6
Critical Stages of Corn Development

Yield = (Ears/A x Kernels/Ear x Kernel wt)
Key Development Growth Stages for Yield

• V6: Row per ear determined, switch to nodal roots
• V12 – V18: Number of kernels per row determined
• VT-R1: Pollination
• R2 – R3: Kernel abortion
• R4 – R6: Kernel size
Application Time Results from NW OH

- Clay soil with 3 – 5% OM
- Tiled
- Prone to summer drought
- Yield avg 180 bu/A, good years 220
- Total N applied 150 or 180 lb/A
- At planting, In-season, Split (starter + V4)
- Four years
2012 Yield for Application Time - UAN

At Planting
- 129.5b bu A⁻¹

Split
- 136.2a bu A⁻¹

at GS V4
- 136.0a bu A⁻¹

Isd = 5.6
2013 Yield for Application Time - UAN

at Planting: 163.0

Split: 172.1

NS
2014 Yield for Application Time - UAN

- 2 x 2 split: 171.2a, 169.8a
- Popup split: 166.7ab, 161bc
- at Planting: 158.5c
- at GS V4: 170.5a

Legend:
- Blue: 10 + 170 lb/A
- Red: 30 + 150 lb/A
- Green: 180 lb/A

Lsd = 7.4
2015 NWARC Field Notes

• Rainfall, June 5 – July 20
 – 13.4 inches; normal 5.6 inches
• Corn planted May 13
• Sidedress UAN June 23
Grain Yield for N Rate
UAN Applied at Planting

Split 180# 164.5
At GS V4 180# 151.2
2015 Ears from Zero N Check
2014 Grain Yield Starter UAN Placement Methods (rates combined)

Popup: 163.4 bu A⁻¹

2x2: 170.5 bu A⁻¹

P < 0.01
2014 Harvest Population – UAN Placement Method (rates combined)

- popup: 27,000 plants acre\(^{-1}\)
- 2 x 2: 28,687 plants acre\(^{-1}\)

p < 0.05
2015 Grain Yield Starter UAN Placement Methods (rates combined)

P < 0.01

138.4

158.3

Popup

2x2
2015 Harvest Population
UAN Starter

<table>
<thead>
<tr>
<th>Plants acre⁻¹</th>
<th>Popup 10#</th>
<th>Popup 30#</th>
<th>2 x 2 10#</th>
<th>2 x 2 30#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30,124a</td>
<td>23,875b</td>
<td>31,000a</td>
<td>30,875a</td>
</tr>
</tbody>
</table>

p < 0.05
Starter Fertilizer Salt Injury Potential

<table>
<thead>
<tr>
<th>Starter Fertilizer</th>
<th>Salt Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-18-18</td>
<td>8.5</td>
</tr>
<tr>
<td>6-24-6</td>
<td>11.50</td>
</tr>
<tr>
<td>6-30-10</td>
<td>13.80</td>
</tr>
<tr>
<td>9-18-9</td>
<td>16.70</td>
</tr>
<tr>
<td>10-34-0</td>
<td>20</td>
</tr>
<tr>
<td>28-0-0</td>
<td>67</td>
</tr>
</tbody>
</table>
Conclusions

• Split yielded more 3/4 years
• No starter benefit
• More opportunities with 2 x 2 starter placement than popup
 – Can increase N with 2 x 2
 – Limited to < 10 lb N with popup
Why Not Delay Application to V8 or Sidedress at V8

• Risk of wet conditions for two weeks at V8
• Appearance
APPEARANCE

Starter

No Starter
Summary

• Single application best yield
 – What if it rains for two weeks at that time?
 – Starter lessens that concern

• In a split system, what is the optimum N rate at planting?

• What is the best time for the split application?
What decision tools perform best for making corn N fertilizer rate recommendations?

Where do they work best? When do they work best?

Empirical-Based Models

Crop Growth Models

Encira
Maize-N
Climate: Nitrogen Advisor
Adapt-N

Proximal Canopy Sensing

Remote Imagery

Soil Tests

PPNT Pre-Plant Soil Nitrate Test
SDNT Side-Dress Soil Nitrate Test

Courtesy Ramson, University of Missouri
Ed’s Thought On Corn N Needs

• At planting 20%
• Between V7 and V10 50%
• Between V16 & tasseling 20%
• Early grain fill 10%
It does not matter when nitrogen is added as long it is still there when the crop needs it!

If I could predict the weather I would be able to develop a perfect nitrogen plan.
Questions