Institute of Ag Professionals

Proceedings of the

2014 Crop Pest Management Shortcourse &

Minnesota Crop Production Retailers Association Trade Show

www.extension.umn.edu/AgProfessionals
Do not reproduce or redistribute without the written consent of author(s).
Big Data from Multistate Research on Soybean Aphid Management

Presented by Kelley J. Tilmon
South Dakota State University

Photo By: R. Venette
Multi-Disciplinary, Multi-State Aphid Project 2012-2014

- Funded by the North Central Soybean Research Program

- 26 interdisciplinary collaborators throughout the North Central region
 - entomologists, plant breeders, molecular biologists, extension specialists, ag economist
Major Project Objectives

1. **Integrated pest management** (Kelley Tilmon, SDSU)
2. **Breeding/plant resistance** (Brian Diers, UIL)
3. **Aphid biotypes** (Andy Michel, OSU)
4. **Biological control** (George Heimpel, UMN)
5. **Extension and outreach** (Erin Hodgson, ISU)
Project Collaborators

- Minnesota: Bruce Potter, George Heimpel
- Michigan: Dechun Wang
- Indiana: Christian Krupke
- Iowa: Matt O’Neal, Erin Hodgson, Bryony Bonning
- Kansas: Brian McCormack, John Reese
- Nebraska: Tom Hunt, Tiffany Heng-Moss, Blair Siegfried
- South Dakota: Kelley Tilmon, Louis Hesler
- Wisconsin: Dave Hogg, Eileen Cullen, Paul Mitchell
- North Dakota: Deirdre Prischmann, Jason Harmon, Jan Knodel
- Ohio: Andy Michel, Rouf Mian
- Delaware: Doug Tallamy, Keith Hopper
Soybean aphids are still a problem…

- Soybean aphid still costs producers a lot of money
 - Estimated $827 million annual expenditures for foliar and seed insecticides

- Array of management options (seed treatments, resistant varieties, etc.)

- Research to identify the most profitable management approaches and outreach to communicate them
Soybean Aphid Management Options

- Foliar Sprays
- Seed Treatments
- Early Season Predation
- Late Season Predation
- Plant Resistance: Rag genes

Slide courtesy of Christian Krupke, Purdue University
1. Insecticidal seed treatments

2. Aphid-resistant soybean varieties
Neonicotinoid Seed Treatments

- Target insects
 - Often bundled with fungicides
- Taken up in plant tissue after germination
- Examples:
 - imidacloriprid (e.g., Gaucho)
 - thiamethoxam (e.g., Cruiser)
Neonicotinoid seed treatments are widespread

- Most annual crops grown from treated seed
 - Virtually all corn (95+ million acres)
 - 60-75% of soybean (more in some areas) (70+ million acres)
 - Canola, wheat cotton
- Total of ≈ 200 million acres/year

Slide courtesy of Christian Krupke, Purdue University
Insecticidal seed treatments in soybean: A current hot topic

MEMORANDUM

SUBJECT: Benefits of Neonicotinoid Seed Treatments to Soybean Production
A key question…

- Are insecticidal seed treatments a good insect control investment in soybeans in the North Central region?

 - In 2014 North Central producers spent approximately $316 million on them
NCSRP Multistate Experiment, 2012-2013

Broad-scale study of thiamethoxam seed treatments

- 7-state field study; 8 locations; 2 years
 - Wide range of conditions
- Experiment led by Dr. Christian Krupke (Purdue)
- Economic analysis by Dr. Paul Mitchell, ag economist (University of Wisconsin)
Seed Treatment Study Collaborators

- Eileen Cullen (UW-Madison)
- Erin Hodgson (ISU)
- Janet Knodel (NDSU)
- Brian McCornack (KSU)
- Paul Mitchell (UW-Madison)
- Bruce Potter (UMN-Lamberton)
- Kelley Tilmon (SDSU)
Questions about thiamethoxam seed treatment on soybean

- Window of activity
- Expression in pollen
- Efficacy against soybean aphid
- Net return of thiamethoxam vs. scouting/thresholds/foliar-treatment
Window of activity
Thiamethoxam in soybean, post seed-treatment

- Sampled plant tissue in each location through growing season for thiamethoxam levels
- Newest trifoliate; pollen (when flowering)
- Untreated plants vs. thiamethoxam-treated plants
- LC-MS/MS analysis to determine when/where/how much insecticide is present in plant tissues
Good news for pollinators: no neonicotinoids detected in soybean pollen of any treatment.
<table>
<thead>
<tr>
<th>Stage</th>
<th>Days post planting</th>
<th>Untreated seed</th>
<th>CruiserMaxx seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>VE*</td>
<td>8</td>
<td>31.4 (3.6)</td>
<td>6509.3 (1204.3)</td>
</tr>
<tr>
<td>VC*</td>
<td>11</td>
<td>13.7 (8.2)</td>
<td>9075.0 (4550.6)</td>
</tr>
<tr>
<td>V1*</td>
<td>14</td>
<td>8.0 (2.7)</td>
<td>1366.1 (405.7)</td>
</tr>
<tr>
<td>V1/V2*</td>
<td>18</td>
<td>39.3 (26.4)</td>
<td>151.3 (67.4)</td>
</tr>
<tr>
<td>V2</td>
<td>20</td>
<td>0.2 (0.1)</td>
<td>10.0 (4.3)</td>
</tr>
<tr>
<td>V2/V3</td>
<td>23</td>
<td>0.7 (1.3)</td>
<td>1.0 (0.3)</td>
</tr>
<tr>
<td>V3</td>
<td>26</td>
<td>2.3 (3.1)</td>
<td>6.7 (4.1)</td>
</tr>
<tr>
<td>V5</td>
<td>29</td>
<td>0.1 (0.1)</td>
<td>0.5 (0.08)</td>
</tr>
<tr>
<td>V6</td>
<td>32</td>
<td>2.0 (3.8)</td>
<td>0.7 (0.2)</td>
</tr>
<tr>
<td>R1</td>
<td>35</td>
<td>0.02 (0.01)</td>
<td>0.1 (0.07)</td>
</tr>
<tr>
<td>R1</td>
<td>38</td>
<td>0.08 (0.1)</td>
<td>0.08 (0.003)</td>
</tr>
</tbody>
</table>

Concentrations (ppb) of thiamethoxam from foliage samples (n=88 samples)

* = significant differences detected
ANOVA, $F=20.03$; df=1,120; $P<0.001$

Slide courtesy of Christian Krupke, Purdue University
Concentrations (ppb) of thiamethoxam from foliage samples (n=88 samples).

<table>
<thead>
<tr>
<th>Stage</th>
<th>Days post planting</th>
<th>Untreated seed</th>
<th>CruiserMaxx seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>VE*</td>
<td>8</td>
<td>31.4 (3.6)</td>
<td>6509.3 (1204.3)</td>
</tr>
<tr>
<td>VC*</td>
<td>11</td>
<td>13.7 (8.2)</td>
<td>9075.0 (4550.6)</td>
</tr>
<tr>
<td>V1*</td>
<td>14</td>
<td>8.0 (2.7)</td>
<td>1366.1 (405.7)</td>
</tr>
<tr>
<td>V1/V2*</td>
<td>18</td>
<td>39.3 (26.4)</td>
<td>151.3 (67.4)</td>
</tr>
<tr>
<td>V2</td>
<td>20</td>
<td>0.2 (0.1)</td>
<td>10.0 (4.3)</td>
</tr>
<tr>
<td>V2/V3</td>
<td>23</td>
<td>0.7 (1.3)</td>
<td>1.0 (0.3)</td>
</tr>
<tr>
<td>V3</td>
<td>26</td>
<td>2.3 (3.1)</td>
<td>6.7 (4.1)</td>
</tr>
<tr>
<td>V5</td>
<td>29</td>
<td>0.1 (0.1)</td>
<td>0.5 (0.08)</td>
</tr>
<tr>
<td>V6</td>
<td>32</td>
<td>2.0 (3.8)</td>
<td>0.7 (0.2)</td>
</tr>
<tr>
<td>R1</td>
<td>35</td>
<td>0.02 (0.01)</td>
<td>0.1 (0.07)</td>
</tr>
<tr>
<td>R1</td>
<td>38</td>
<td>0.08 (0.1)</td>
<td>0.08 (0.003)</td>
</tr>
</tbody>
</table>

* = significant differences detected
ANOVA, F=20.03; df=1,120; P<0.001

Within 3 weeks after planting, concentration of thiamethoxam in soybean foliage is equivalent to non-treated plants.

Slide courtesy of Christian Krupke, Purdue University
Thiamethoxam concentration in new soybean vegetation
Thiamethoxam in new tissue fades 3 weeks after planting (early/mid June)

Aphids typically start to build (mid/late July)
What about yield?
2012 Study Design

• Five states, six locations

• Minimum plot size = 40’ x 4 rows (30”); 4 reps

• Three treatments (all with same soybean variety at a given location):
 – Naked seed
 – ApronMaxx
 – CruiserMaxx
• 2012 was a drought year
• Little/no soybean aphid pressure except in Minnesota
NCSRP study results 2012

- No significant difference between any treatments
- No intrinsic “yield bump” from seed treatment

<table>
<thead>
<tr>
<th>STATE</th>
<th>TREATMENT</th>
<th>YIELD (bu/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>Naked seed</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>ApronMaxx</td>
<td>23.9</td>
</tr>
<tr>
<td></td>
<td>CruiserMaxx</td>
<td>23.6</td>
</tr>
<tr>
<td>MN</td>
<td>Naked seed</td>
<td>54.1</td>
</tr>
<tr>
<td></td>
<td>ApronMaxx</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>CruiserMaxx</td>
<td>50.2</td>
</tr>
<tr>
<td>ND (2 locations)</td>
<td>Naked seed 1</td>
<td>37.2</td>
</tr>
<tr>
<td></td>
<td>ApronMaxx 1</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>CruiserMaxx 1</td>
<td>37.2</td>
</tr>
<tr>
<td></td>
<td>Naked seed 2</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>ApronMaxx 2</td>
<td>25.9</td>
</tr>
<tr>
<td></td>
<td>CruiserMaxx 2</td>
<td>23.6</td>
</tr>
<tr>
<td>SD</td>
<td>Naked seed</td>
<td>35.6</td>
</tr>
<tr>
<td></td>
<td>ApronMaxx</td>
<td>37.4</td>
</tr>
<tr>
<td></td>
<td>CruiserMaxx</td>
<td>35.1</td>
</tr>
<tr>
<td>WI</td>
<td>Naked seed</td>
<td>69.8</td>
</tr>
<tr>
<td></td>
<td>ApronMaxx</td>
<td>68.8</td>
</tr>
<tr>
<td></td>
<td>CruiserMaxx</td>
<td>67.5</td>
</tr>
</tbody>
</table>

Table courtesy of Christian Krupke, Purdue University
2013 Study Design

- Added additional states/sites (7 states, 8 locations)

- Added an “IPM treatment” = foliar insecticide applied when aphids reach 250 aphid/plant threshold

- Conducted economic analysis to compare likelihood of return on seed treatment vs. scout+spray
State | **Treatment** | **Yield (bu/acre)**
--- | --- | ---
MN | Naked seed | 45.2
| Naked + Warrior II | 49.1
| ApronMaxx | 48.6
| CruiserMaxx | 45.9
ND (2 locations) | Naked seed 1 | 40.4
| Naked + Warrior II | 40.8
| ApronMaxx 1 | 38.9
| CruiserMaxx 1 | 41.6
| Naked seed 2 | 50.2
| Naked + Warrior II | 49.6
| ApronMaxx 2 | 48.7
| CruiserMaxx 2 | 49.6
IN | Naked seed | 41.6
| Naked + Warrior II | 39.9
| ApronMaxx | 43.8
| CruiserMaxx | 41.9
KS | Naked seed | 61.2
| Naked + Warrior II | 61.2
| ApronMaxx | 63.4
| CruiserMaxx | 56.4
SD | Naked seed | 28.5
| Naked + Warrior II | 43.6
| ApronMaxx | 39.5
| CruiserMaxx | 39.6
WI | Naked seed | 52.9
| Naked + Warrior II | 53.5
| ApronMaxx | 55.7
| CruiserMaxx | 57.9
CruiserMaxx
sig. lower
CruiserMaxx sig. lower

IPM sig. higher
CruiserMaxx sig. lower

IPM sig. higher

ApronMaxx and CruiserMaxx sig. higher
No sig. differences
IPM (scout and treat) vs. CruiserMaxx-only: Economic analysis

Common assumptions:
Soybean price = $11.36/bu
Soybean yield = 50 bu/acre

Slide courtesy of Christian Krupke, Purdue University
Question:

- What are the chances of a net return with either of these approaches?
 - Thiamethoxam seed treatment
 - scouting/thresholds/foliar-treatment

- Assumes an “aphid year”

- Analysis by Dr. Paul Mitchell, ag economist, UW Madison
IPM vs. CruiserMaxx-only: Economic analysis

Costs of CruiserMaxx-only approach:
$7.67/acre insecticidal seed treatment
IPM vs. CruiserMaxx-only: Economic analysis

Costs of CruiserMaxx-only approach: $7.67/acre insecticidal seed treatment

Slide courtesy of Christian Krupke, Purdue University
IPM vs. CruiserMaxx-only: Economic analysis

Costs of CruiserMaxx-only approach: $7.67/acre insecticidal seed treatment

= 66.2% chance of positive net return; average return of $6.02/acre
IPM vs. CruiserMaxx-only: Economic analysis

Costs of IPM approach:
- $7.44/acre scouting
- $7.20/acre application cost
- $4.43/acre cost of insecticide

Assume 25% of fields require treatment

Costs of CruiserMaxx-only approach:
- $7.67/acre insecticidal seed treatment

= 66.2% chance of positive net return; average return of $6.02/acre

Slide courtesy of Christian Krupke, Purdue University
IPM vs. CruiserMaxx-only: Economic analysis

Costs of IPM approach:
$7.44/acre scouting
$7.20/acre application cost
$4.43/acre cost of insecticide
Assume 25% of fields require treatment

Costs of CruiserMaxx-only approach:
$7.67/acre insecticidal seed treatment

= 66.2% chance of positive net return; average return of $6.02/acre

Slide courtesy of Christian Krupke, Purdue University
IPM vs. CruiserMaxx-only: Economic analysis

Costs of IPM approach:
- $7.44/acre scouting
- $7.20/acre application cost
- $4.43/acre cost of insecticide

Assume 25% of fields require treatment

= 94.5% chance of positive net return; average return $21.02/acre

Costs of CruiserMaxx-only approach:
- $7.67/acre insecticidal seed treatment

= 66.2% chance of positive net return; average return of $6.02/acre

Slide courtesy of Christian Krupke, Purdue University
The Upshot

• In a year with aphid pressure, across the region, thiamethoxam seed treatment might provide a net return (66% chance), but classic IPM (scouting/threshold/foliar insecticide) has a better chance providing a net return (94% chance)

• Potential net return higher for IPM ($21) than seed treatment ($6)
Will seed treatment let me walk away from the problem? A word of caution...
Seed Treatment Study in South Dakota, 2013

- ApronMaxx
- Cruiser
- CruiserMaxx
- No Treatment
- IPM

Aphids/Plant

Damage Boundary

Dates:
- 6/25
- 7/1
- 7/8
- 7/15
- 7/23
- 7/29
- 8/6
- 8/12
- 8/19
- 8/26
If you didn’t scout and spray these treatments you lost money. If you did, you paid for your insect management twice.
Insecticidal seed treatments in soybean: A current hot topic

MEMORANDUM

SUBJECT: Benefits of Neonicotinoid Seed Treatments to Soybean Production
Bean Leaf Beetle

• Seed treatment and early-season bean leaf beetle
• Different pest complexes in Mid-south
Summary

- CruiserMaxx-treated soybeans are not toxic for long enough to control aphids in many parts of the upper Midwest.
- Know what you can reasonably expect from the product.
- Risk/benefit calculations will differ for each producer.
- Insecticidal seed treatment in soybean has a role for some producers, in some situations.
NOT...
Aphid-Resistant Varieties

- Aphid-resistant varieties are under-utilized in soybean IPM
- One of our most promising management tools
- Can eliminate the need to spray in many cases
- Rag1 and Rag2 are commercially available
- Gene pyramid varieties are on the horizon
Yield loss to aphids kg/hectare (± SEM)

- Susceptible: Yield loss significantly higher than Rag1 and Rag2, with a p-value of < 0.0001.
- Rag1: Yield loss is significantly lower than Susceptible, with a p-value of 0.01.
- Rag2: Yield loss is not significantly different from Susceptible.
- Rag1 + Rag2: Yield loss is not significantly different from Rag1 or Rag2 individually.

2011-2013 Multi-State NCSRP Project
• Can be bred into high-yield lines

• No yield penalty
High yielding conventional experimental lines with *Rag1* and *Rag2* combined (B. Diers, UIL)

<table>
<thead>
<tr>
<th>Name</th>
<th>Bu/A</th>
<th>Rank</th>
<th>Trait</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD12-08872</td>
<td>72.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LD12-12701a</td>
<td>71.6</td>
<td>2</td>
<td>Rag1+2</td>
</tr>
<tr>
<td>LD12-00268</td>
<td>71.3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LD12-07619</td>
<td>70.2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LD12-12730a</td>
<td>70.1</td>
<td>5</td>
<td>Rag1+2</td>
</tr>
<tr>
<td>LD12-12614a</td>
<td>69.9</td>
<td>6</td>
<td>Rag1+2</td>
</tr>
<tr>
<td>LD12-12632a</td>
<td>69.8</td>
<td>7</td>
<td>Rag1+2</td>
</tr>
<tr>
<td>LD12-12734a</td>
<td>68.7</td>
<td>9</td>
<td>Rag1+2</td>
</tr>
<tr>
<td>LD12-05816a</td>
<td>68.2</td>
<td>11</td>
<td>Rag 2</td>
</tr>
<tr>
<td>LD02-4485 (MG II)</td>
<td>68.1</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Yield Loss in a Resistant Line under Heavy Aphid Pressure (Rosemont, MN 2008)

![Graph showing yield loss in a resistant line and an susceptible line under heavy aphid pressure.](#)
Thanks for Checkoff Support for State and Regional Projects

The North Central Soybean Research Program, a collaboration of 12 state soybean associations, invests soybean checkoff funds to improve yields and profitability via university research and extension.
Thanks!

Questions?