Institute of Ag Professionals

Proceedings of the

2014 Crop Pest Management Shortcourse &

Minnesota Crop Production Retailers Association Trade Show

www.extension.umn.edu/AgProfessionals
Do not reproduce or redistribute without the written consent of author(s).
Input and Management Based Soybean Production Systems with Yield Enhancers and Protectors

John Orlowski, David Marburger, Eric Wilson, Bryson Haverkamp, Randall Laurenz, Shaun Casteel, Emerson Nafziger, Kraig Roozeboom, Jeremy Ross, Kurt Thelen, Chad Lee, Shawn Conley, and Seth Naeve
Collaborators

Dr. Seth Naeve
University of Minnesota

Dr. Shaun Conley
University of Wisconsin

Dr. Kraig Roozeboom
Kansas State University

Dr. Chad Lee
University of Kentucky

Dr. Emerson Nafziger
University of Illinois

Dr. Shaun Casteel
Purdue University

Dr. Jeremy Ross
University of Arkansas

Dr. Kurt Thelen
Michigan State University
Graduate Students
USB 2.0 Locations in 2012-2014

<table>
<thead>
<tr>
<th>Color</th>
<th>MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>pink</td>
<td>2.0</td>
</tr>
<tr>
<td>green</td>
<td>2.5</td>
</tr>
<tr>
<td>blue</td>
<td>3.0</td>
</tr>
<tr>
<td>orange</td>
<td>3.5</td>
</tr>
<tr>
<td>red</td>
<td>4.0</td>
</tr>
<tr>
<td>yellow</td>
<td>4.5</td>
</tr>
</tbody>
</table>
5 Studies

- USB 1 - “SOYA”: Systematic Optimization of Yield-Enhancing Applications
 - The updated “Kitchen Sink”
 - Examines individual crop inputs and ‘systems’ of inputs
- USB 2 – Variety X Management (SOYA)
 - Examines variety interactions with management
- USB 3 – Population X Management
 - Examines population interactions with management
5 Studies

• USB 4 – Row spacing x Management
 – Examines row spacing interactions with management
 • Kansas and Minnesota only

• USB 5 – Management effects on seed quality
 – Management effects on main seed quality traits
 – Management effects on secondary traits such as isoflavones and fatty acids
 • Michigan only
USB 1 “SOYA”: Systematic Optimization of Yield-Enhancing Applications

• **Seed Treatments (ST):**
 - Untreated control (UTC)
 - Fungicide seed treatment (Fung ST) ➔ *Acceleron®* (45ml/100 lb)
 - Fung ST + Insecticide ST + Nematicide & Biological ST ➔ *Acceleron™ IX-409* (w/ Imidacloprid) (118ml/100 lb) + *Poncho®/VOTiVO® (P/V)* (59ml/100 lb)
 - Fung ST + Insecticide ST + Nematicide & Biological ST + LCO ST + LCO (at V4-V6) ➔ *Acceleron™ IX-409* (w/ Imidacloprid) (118ml/100 lb) + *P/V®* (59ml/100 lb) + *Optimize®* (83ml/100 lb) + *Ratchet™* (4oz/a)
USB 1 “SOYA”: Systematic Optimization of Yield-Enhancing Applications

• FOLIAR OR OTHER TREATMENTS:
 – Nitrogen ➔ Urea (75 lb/a) w/ Agrotaín (3 qt/ton) + ESN® (75 lb/a) @ V4
 – Defoliant ➔ Cobra® (12 fl oz/a) @ V4
 – Foliar fertilizer ➔ Task Force®2 (64 fl oz/a) @ R1
 – Antioxidant ➔ Bio-Forge® (16 fl oz/a) @ R3
 – Foliar fungicide ➔ Headline® (6 fl oz/a) @ R3
 – Foliar insecticide ➔ Warrior II® (1.92 fl oz/a) @ R3

• F and I - Priaxor and Endigo in 2013 and 2014
USB 1 “SOYA”: Systematic Optimization of Yield-Enhancing Applications

• COMBINATION TREATMENTS:
 – SOYA Complete
 – SOYA plus Defoliant @ V4
 – SOYA without Nitrogen
 – SOYA without Foliar fungicide
 – SOYA without Foliar fungicide & insecticide
Summary

• 60 total site years of data
 – 28 showed significant treatment effects
 • 2012- 5 locations
 • 2013- 11 locations
 • 2014- 12 locations
 – North: 15 out of 21 responsive site-years
 – Central: 5 out of 18 responsive site-years
 – South: 8 out of 22 responsive site-years
Red bars indicate statistically greater than UTC at $p \leq 0.05$.
High-Yield Environments (>75.9 Bu/A)

*Red bars indicate statistically greater than UTC at \(p \leq 0.05 \)

ARcol13, ARcol14, ARnew14, ILurb14, INwla14, KYlex13, WIjan13, WIjan14
Low-Yield Environments (<48.5 Bu/A)

*Red bars indicate statistically greater than UTC at p ≤ 0.05

ARnew12, ILurb12, IAhum13, KSros13, MIela12, MIela14
* Red bars indicate statistically greater than UTC at p ≤ 0.05

KYlex, KYhod, KSross, KSman, KSsca, ARnew, ARcol,
*Red bars indicate statistically greater than UTC at $p \leq 0.05$.

IAfar, IAhum, ILmon, ILurb, INwan, INwla
North (MI, MN, WI)

* Red bars indicate statistically greater than UTC at $p \leq 0.05$

MIela, MIbre, MNstp, MNwan, MNIku, MNIkd, WIarl, WIjan
Conclusions

• Seed treatment and early season products show little value in increasing soybean yield
• Benefit from foliar insecticide and fungicide were greatest in the north
• There did not appear to be a yield level x management interaction
 – Higher yielding environments may not see additional benefit from intensive management
USB 2: Variety x management interactions

• Objectives:
 – Determine if cultivar selection interacts with input level
 • Does cultivar selection dictate which inputs to use?
 – Quantify input effects on yield components
Treatments

• 6 cultivars
 – High-yield potential suitable for each location
• 3 input levels:
 1. Standard practice (UTC)
 • University recommendations for fertilizer and weed control
 • No other external inputs
 2. SOYA complete
 • “complete” seed treatment
 • Ratchet® + nitrogen fertilizer @ V4
 • Foliar fertilizer @ R1
 • BioForge®, foliar fungicide, foliar insecticide @ R3
 3. SOYA minus foliar fungicide
Statistical Analyses

• Examined each site-year
 – Determine frequency of significant cultivar and input differences and their interaction

 *Cultivar treated as fixed effect

• Regional scale
 – North (MI, MN, WI)
 – Central (IA, IL, IN)
 – South (AR, KS, KY)

 *Cultivar and location treated as random effects
Preliminary Yield Results

• Site-year analysis
 – Only 3 of 53 (5.7%) site-years had a cultivar by input level interaction
 – Cultivar differences were observed in 37 of 53 (69.8%) site-years
 – Input differences were observed in 34 of 53 (64.2%) site-years
2012-2014 Yield

Southern Region
(Arkansas, Kansas, Kentucky)

Columns with the same letter are not statistically different at $P \leq 0.05$
Columns with the same letter are not statistically different at $P \leq 0.05$.
2012-2014 Yield

Northern Region
(Michigan, Minnesota, Wisconsin)

Columns with the same letter are not statistically different at $P \leq 0.05$.
2012-2014 Yield

Across all locations

![Bar chart showing yield comparison across different input levels.]

- **Standard practice** (C): 62 bu acre⁻¹
- **SOYA complete** (A): 65.7 bu acre⁻¹ (+3.7 bu)
- **SOYA minus foliar fungicide** (B): 64.5 bu acre⁻¹ (+2.5 bu)

Columns with the same letter are not statistically different at P ≤ 0.05.

Source: United Soybean Board
2012-2013 Yield Components

Across all locations

Seeds m\(^{-2}\)

<table>
<thead>
<tr>
<th>Input level</th>
<th>Standard practice</th>
<th>SOYA complete</th>
<th>SOYA minus foliar fungicide</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>+2.2%</td>
<td>+1.6%</td>
<td></td>
</tr>
</tbody>
</table>

Seed mass (grams/100 seeds)

<table>
<thead>
<tr>
<th>Input level</th>
<th>Standard practice</th>
<th>SOYA complete</th>
<th>SOYA minus foliar fungicide</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>+2.8%</td>
<td>+1.9%</td>
<td></td>
</tr>
</tbody>
</table>

Columns with the same letter are not statistically different at \(P \leq 0.05 \)
Preliminary Conclusions

• Significant cultivar x input interaction was not common.
 – Suggests cultivar selection does not dictate which input level should be used

• Input effects were slightly different by region

• Yield component measurements indicated increased yield across all site-years was due to increased seed number and size.

• Although high input levels increased yield, grower ROI would likely be negative given today’s commodity prices.
USB 3: Population x management interactions

• Objective:

 – Is there an interaction between soybean population and management
 • Do high-input systems require higher plant populations to maximize yield?
 -or-
 • Can high-input systems compensate for a low plant population?
Justification

• Increased soybean prices have emphasized growers’ attention to soybean management decisions

• High market prices have generated many discussions about inputs, variety selection, seeding rates, and the interactions of these management practices

Annual Soybean Sale Price ($ bu⁻¹)

$US Dollar bu⁻¹

USDA-NASS, 2014
Yield Promotion vs. Yield Protection

Greater benefit from high-input system with increasing population

High-input system provides protection from yield loss at lower plant populations
-or-
Higher plants stands cover for crop health issues without additional inputs
Research Methods

• Conducted during 2012 -2014 growing seasons
• Nine States: Arkansas, Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, and Wisconsin
• Minimum of two locations per state
• Randomized Complete Block with 4 reps
• Six target seeding rates: 123500, 197600, 271700, 345800, 419900, and 494000 plants ha$^{-1}$
• Two management regimes: Univ. recommendations (UTC) vs. High-input system (SOYA)
Analysis

- Harvest plant populations were used for analysis
- Yield was standardized as a % of the maximum for each environment
 - 56 Environments total
- The “yield environment” variable was determined by comparison of location the mean to the grand mean (High>1 Std. Dev, Average±1 Std. Dev., Low<1 Std. Dev.)
- Mixed analysis was conducted to determine the effects of yield environment, population and management
 - SAS V9.3 (P<0.05)
Results

• No interaction between population and management was revealed

• The equation $y = \alpha(1-\exp^{-\beta x})$ was used to develop best-fit non-linear regression curves for population and management
 – (Edwards and Purcell, 2005)
2012-2014 Average Yield Env. (43 Envs.)

UTC: \(\%\text{Max} = 0.7916(1-e^{-0.000059x}) \) \(R^2 = 0.98 \)

SOYA: \(\%\text{Max} = 0.8524(1-e^{-0.000059x}) \) \(R^2 = 0.98 \)

- 95% - 50775 ppa
- 99% - 78053 ppa
2012-2014 High Yield Env. (8 Envs.)

\[\%\text{Max} = 0.8644(1-e^{-0.000062x}) \quad R^2 = 0.99 \]

- 95% - 48318 ppa
- 99% - 74276 ppa
2012-2014 Low Yield Env. (5 Envs.)

% of Max Yield vs. Harvest Plant Population (PPA)
%Max = 0.7365(1-e^{-0.000034x})

R² = 0.95

95% - 88110 ppa

99% - 135446 ppa
2012-2014 Management Responsive Environments (17 Envs.)

UTC: %Max=0.7696(1-e^{-0.000056x}) \ R^2 = 0.99

SOYA: %Max=0.8695(1-e^{-0.000060x}) \ R^2 = 0.99

95% - 49930 & 53495 ppa
99% - 76753 & 82235 pph
Conclusions

• No interaction between population and management
 – Separate analysis of seventeen management responsive sites confirmed no interaction between population and management

• High yield environments achieved maximum yields at only slightly lower plant stands in comparison to average yield environments
 – 99% of Maximum at 74K compared with 78K (High and Average)

• Yield response to population was very small (non-existent) in low yielding environments indicating the presence of other yield limiting factors
USB 4: Row Spacing x Management Interaction

• Objectives:
 – Evaluate the interaction between management systems and row spacing
 • Do high input systems have a greater affect in a particular row spacing?
 • In wide rows, can input systems overcome yield advantage from narrow rows?
Locations

Kansas
3.4 and
4.0/4.1 MG

Minnesota
2.4 MG
Treatments

• **3 row spacings**
 – Narrow (7.5 or 10 inches)
 – Medium (15 or 20 inches)
 – Wide (30 inches)

• **4 input systems:**
 1. Untreated control (UTC)
 • University recommendations for fertilizer and weed control
 • No other external inputs
 2. Seed treatment plus foliar fungicide (STFF)
 • Fungicide, insecticide, and nematicide seed treatment
 • Foliar fungicide @ R3
 3. SOYA
 • “complete” seed treatment
 • Ratchet®, nitrogen fertilizer @ V4
 • Foliar fertilizer @ R1
 • BioForge®, foliar fungicide, foliar insecticide @ R3
 4. SOYA minus foliar fungicide (SOYA – FF)
Statistical Analyses

• Main focus looked at each state separately
 – Row spacing and input system treated as fixed effect
 – Location and year treated as random

• Also examined number of site-year responses
Preliminary Yield Results

- Site-year analysis of yield responses
 - 14 site-years (Waseca, MN 2014 – complete loss)
 - No site-years showed a row spacing by input system interaction
 - Row spacing effect on yield observed in 5 of 14 (35.7%) site-years
 - Input system effect on yield observed in 5 of 14 (35.7%) site-years
2012-2014 Row Spacing

Columns with the same letter are not statistically different at $P \leq 0.05$
Columns with the same letter are not statistically different at $P \leq 0.05$
Overall

2012-2014 Row Spacing

Columns with the same letter are not statistically different at $P \leq 0.05$
2012-2014 Input System

Columns with the same letter are not statistically different at $P \leq 0.05$
Columns with the same letter are not statistically different at $P \leq 0.05$.

2012-2014 Input System

Input System

- UTC
- STFF
- SOYA
- SOYA - FF

Yield (bu ac$^{-1}$)

- C: +2.3 bu
- B: +5.1 bu
- A: +4.3 bu
- AB: +5.1 bu

Minnesota
Overall

2012-2014 Input System

Yield (bu ac⁻¹)

In the image, the bar chart shows the yield comparison across different input systems over the 2012-2014 period. The bars are labeled as follows:

- UTC
- STFF
- SOYA
- SOYA - FF

The bars are color-coded and labeled with percentage increases in yield:

- UTC: C, +1.9 bu
- STFF: B, +4.5 bu
- SOYA: A, +3.2 bu
- SOYA - FF: AB

Columns with the same letter are not statistically different at $P \leq 0.05$. This indicates that the differences in yield among these treatments are not statistically significant at the 0.05 level.
Preliminary Yield Conclusions

• No row spacing by input system interactions were found
 – Row spacing and input system effect on yield did not depend upon the other factor

• Use of high input systems increased yield.
 – Slightly greater response in Minnesota

• Preliminary economic analysis shows a negative ROI for all input systems given today’s commodity prices
In Summary

USB 1 “SOYA”: What worked

• Across 3 years, we saw a much stronger response to inputs in the North
• The full compliment of inputs tended to provide the greatest yields
• Where there were insects, a prophylactic insecticide application worked
 – However, even in these locations, insecticide was not REQUIRED to increase yields – although it appears that it was - by far - the most potent force
Study #1 “SOYA”: What didn’t

• Seed treatments of all sorts
 – although combo products did increase yields in a small number of site-years

• Foliar fungicide
 – Similarly, there were indications that it may be second most important product after foliar insecticides

• Bioforge – Cobra - Foliar fertilizers - Nitrogen
Study #1 “SOYA”: What we don’t know

• We only have estimates of insect populations – and
• We didn’t include additional insecticide treatments – so
• We do not know what insects were affected nor do we know how they were affected
• We do not know what yield gains would have been achieved with properly timed treatments
Take-home

• This summary still represents ‘preliminary data,’ so there can’t be true ‘take homes’ But… if there were...

 – Yields were more responsive to inputs in the North
 – A whole lot of treatments did very little for us.
 – A prophylactic insecticide application was better than doing nothing when insects were present
Take-home

• This research represents an evaluation of true ‘Input-based Soybean Management”. We were not attempting to identify best management practices, only products that provide value to producers in the absence of an “Active Soybean Management” based approach.

• Most products will have a better chance of success if managed more intensively – on a field by field basis
Acknowledgements

• United Soybean Board
 – Project funding and student fellowship
• Field and lab crews at collaborating universities
 – Data Collection and field management

Thank you for your attention!