Wheat: an Alternative?

Jochum Wiersma
FBM Data

- **What the data tells us:**
 - It appears that HRSW is economically viable across MN, but probably as volatile as corn.

- **What the data doesn’t tell us:**
 - Sample size/sampling error.
 - Rotational effects/considerations
 - Future
Pressures

- **Price:**
 - World stocks continue to be low (drought)
 - Strong export demand (weak $)
 - Winter wheat deteriorating (drought)
 - Fight for acres

- **Inputs:**
 - Fertilizer up sharply
 - Seed up sharply
 - Land rents up sharply
Crop Budgets

- Absolutely essential:
 - Too many things are changing too quickly

- Keep an eye out for FBM data and NDSU’s crop budgets.

- Margin risk and compression will bring us back to reality in a heartbeat
‘Vell, isn’t corn and soybeans a crop rotation, then?’
<table>
<thead>
<tr>
<th>Previous Crop</th>
<th>Conventional Tillage Wheat Yield</th>
<th>No-Till Wheat Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wheat Yield (bu/A)</td>
<td>Wheat on Previous Crop (%)</td>
</tr>
<tr>
<td>Wheat</td>
<td>33.8</td>
<td>100</td>
</tr>
<tr>
<td>Soybean</td>
<td>45.3</td>
<td>134</td>
</tr>
<tr>
<td>Sugar beet</td>
<td>40.8</td>
<td>121</td>
</tr>
<tr>
<td>Sunflower</td>
<td>39.3</td>
<td>116</td>
</tr>
<tr>
<td>Corn</td>
<td>38.6</td>
<td>114</td>
</tr>
<tr>
<td>Flax</td>
<td>38.0</td>
<td>112</td>
</tr>
<tr>
<td>Barley</td>
<td>37.0</td>
<td>109</td>
</tr>
</tbody>
</table>

Source: NDSU
The Lancaster Rotation Experiment
A Long-Term Cropping System Study

- A multiple crop rotation experiment established in 1966
- Objective: To compare the benefits of growing corn continuously and in rotation using commercial nitrogen fertilizer.
- RCB in a split-plot arrangement with two replications.
 - Main-plots= 21 rotations
 - Split-plots= four N levels in corn
A one year break using soybean reduces the rotation effect in the second phase.

Corn Yield Response to Crop Rotation

1998 to 2000
Control treatments averaged across tillage treatments at Arlington, WI.

<table>
<thead>
<tr>
<th>Cropping Sequence</th>
<th>Grain Yield (bushels/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>215</td>
</tr>
<tr>
<td>CCCS-1C</td>
<td>218</td>
</tr>
<tr>
<td>CCCS-2C</td>
<td>200</td>
</tr>
<tr>
<td>CCCS-3C</td>
<td>192</td>
</tr>
<tr>
<td>CCS-1C</td>
<td>214</td>
</tr>
<tr>
<td>CCS-2C</td>
<td>201</td>
</tr>
<tr>
<td>Cont.</td>
<td>192</td>
</tr>
</tbody>
</table>

Source: Lauer, unpublished

Cropping Sequence
C= Corn, S= Soybean, Number = consecutive year of corn

Lauer © 1994-2007
University of Wisconsin - Agronomy

http://corn.agronomy.wisc.edu
At least two break years are needed to measure a response in the second crop phase.

Corn Yield Response to Crop Rotation

Grain Yield (bushels/acre)

<table>
<thead>
<tr>
<th>Cropping Sequence</th>
<th>1990-2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>161</td>
</tr>
<tr>
<td>AB</td>
<td>170</td>
</tr>
<tr>
<td>BC</td>
<td>164</td>
</tr>
<tr>
<td>D</td>
<td>156</td>
</tr>
<tr>
<td>DE</td>
<td>153</td>
</tr>
<tr>
<td>A</td>
<td>173</td>
</tr>
<tr>
<td>CD</td>
<td>157</td>
</tr>
<tr>
<td>AB</td>
<td>169</td>
</tr>
<tr>
<td>CD</td>
<td>160</td>
</tr>
<tr>
<td>E</td>
<td>146</td>
</tr>
</tbody>
</table>

Source: Stanger and Lauer, 2008

A = Alfalfa, C = Corn, O = Oat, S = Soybean, W = Wheat
Adding a third crop does not increase corn grain yield, but does improve soybean grain yield ...

![Graph showing corn and soybean yield response to crop rotation](image)

Source: Lauer, unpublished

C = Corn, S = Soybean, W = Wheat

2004-2006: Values averaged across seed fungicide treatments at Arlington, WI.

http://corn.agronomy.wisc.edu

Lauer © 1994-2007
University of Wisconsin - Agronomy
Rotational Studies

- **What the data tells us:**
 - Crop rotations work - there are advantages to include SGs in rotations, even in a CS or CC world

- **What the data doesn’t tell us:**
 - No comprehensive enterprise/systems analysis:
 - Economies of scale
 - Labor film
 - Input cost differentials
Rotational Considerations

- Do not plant small grains after corn.
 - Q: Why?

- Do plant small grains after soybeans.

- Possible rotations:
 - Winter wheat - Corn - Soybean
 - Spring wheat - Corn - Soybean
 - Small Grain - Corn-Soybean - Alfalfa
Advantages of Soybean

- Non-host crop for major diseases in wheat:
 - Residue born leaf diseases
 - Maximum benefit if rotation is wider than 2 years.
 - Common root rot
 - Maximum benefit if rotation is wider than 3 to 4 years.
 - Fusarium head blight
 - Maximum benefit if rotation is wider than 2 years.

- Weed control flexibility:
 - This is especially true with RR-soybeans
Fertility Management

‘Manure alone might be the shits’
Grain Yield vs Protein

Sims and Rehm, 2003
Grain Yield versus NUE

- Protein: 14.4% @ 90 lbs N; 15.2% @ 120 lbs N

Sims and Rehm, 2003
Grain Protein versus NUE

Sims and Rehm, 2003
Fertility Management

- Soil test.
 - To get a reference point

- Apply according to recommendation:
 - Refer to Small Grains Field Guide
 - Eastern MN and OM% >3.0: 70 lb N/A
 - Western MN: \(N_{rec} = (YG \times 2.5) - STN - NPC \) (=40 lb N/A for soybean)

- Split applications:
 - Be aware that N can not be rate limiting at 5 leaf stage
 - Splits only recommended for very sandy soils.
Seeding Operations

‘This is not your grandfather’s drill’
Population

SDR = \[
\frac{(\text{Desired Stand in Plants/Acre})}{(1 - \text{Expected Stand Loss})}
\]
\[
\times \frac{(\text{Seeds/Pound}) \times (\text{Percentage Germination})}{(\text{Plants per acre}) (\text{times 1 million})}
\]

Initial Stands:

<table>
<thead>
<tr>
<th>Crop</th>
<th>Plants per acre (times 1 million)</th>
<th>Plants per sq. ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter wheat</td>
<td>1.0</td>
<td>23</td>
</tr>
<tr>
<td>Spring wheat</td>
<td>1.30 – 1.35</td>
<td>30 – 32</td>
</tr>
<tr>
<td>Barley</td>
<td>1.25 – 1.30</td>
<td>28 – 30</td>
</tr>
<tr>
<td>Oats</td>
<td>1.25 – 1.30</td>
<td>28 – 30</td>
</tr>
</tbody>
</table>
Depth

- Depth control critical component:
 - You can not afford a delay in emergence.
 - Increases problems with root rots.

- Ideal seeding depth is 1” - 1.5”
Crop Physiology
Temperature

Minimum, optimum, and maximum growth temperatures for small grains.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>37-39</td>
<td>75-77</td>
<td>86-90</td>
</tr>
<tr>
<td>Barley</td>
<td>37-39</td>
<td>68-70</td>
<td>82-86</td>
</tr>
<tr>
<td>Oat</td>
<td>37-39</td>
<td>68-70</td>
<td>82-86</td>
</tr>
</tbody>
</table>

Q: What is the correct order to plant small grains?
Management Stages
Different crop staging models in use.

Feekes and Zadoks most widely used.

Remember to:
- Only count the main stem
- To include dead leaves or if unsure the axillary tillers.
Figure 1. Timetable with approximate days after emergence and growing degree days (base 40°F) required to attain various growth stages. Data are for an intermediate maturing variety grown in St. Paul, Minnesota. For simplicity, tillers are not shown after "advanced tillering."

- Emergence (10)
- Two-leaf (12)
- Tiller length begins (13, 21)
- Advanced tillering (15, 23)
- Jointing (16, 31)
- Flag leaf emerging (38)
- Flag leaf fully emerged (39)
- Boot (45)
- Head emergence (58)
- Maturity (89)

Days after emergence: 12, 15, 23, 28, 34, 39, 41, 45, 85
Growing degree days: 170, 230, 430, 500, 690, 810, 885, 990, 2260
Optimizing Scouting Time

- **In HRSW:**
 - Fifteen distinct crop growth stages.
 - Five of these are critical in HRSW:
 - 2 leaf stage - stand count, weed ID)
 - 4 to 5 leaf stage - weed ID, insects, and fungi
 - flag leaf emergence - insects, and fungi
 - heading to flowering - insects, and fungi
 - physiological maturity - pre-harvest management
Scouting Activities

<table>
<thead>
<tr>
<th>Timing Stage</th>
<th>Growth Stage (Zodaks)</th>
<th>Scouting Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Agronomic</td>
</tr>
<tr>
<td>2–Leaf Stage</td>
<td>12</td>
<td>Stand count</td>
</tr>
<tr>
<td>4 – 5 Leaf Stage</td>
<td>14-15</td>
<td>Estimate yield (if jointing has started)</td>
</tr>
<tr>
<td>Flag Leaf Emergence</td>
<td>37</td>
<td>-</td>
</tr>
<tr>
<td>Anthesis</td>
<td>60</td>
<td>Estimate yield</td>
</tr>
<tr>
<td>Physiological Maturity</td>
<td>90</td>
<td>-</td>
</tr>
</tbody>
</table>
Fungal Diseases

- **Early season:**
 - Tan spot
 - Powdery mildew

- **Mid season**
 - Tan spot
 - Septoria leaf blotch
 - Leaf rust

- **Heading**
 - Fusarium Head Blight
 - All of the above
Powdery Mildew

Tan Spot & Leaf Rust

FHB & Ergot

Fungal Diseases

Decisions:

- HRSW - use decision guides and risk maps (http://mawg.cropdisease.com/) and understand risk of leaf rust and FHB.

- Understand the disease ratings for the different varieties
Disease Forecasting

FHB

Tan Spot
State Yield Trials

- **Yield responses to fungicides:**
 - 2004 - across locations and varieties 8 bu/A
 - 2005 - across locations and varieties 6 bu/A
 - 2006 - across locations and varieties 3.5 bu/A
 - 2007 - across locations and varieties 10 bu/A

- **Rank correlation for grain yield:**
 - In 2004 and 2005, 4 out 5 environments showed no rank correlation
 - Use of fungicides results in rank changes
FHB Fungicide Update

- **Prosaro**
 - Will not receive full label in 2008

- **Proline + Folicur (3+3)**
 - Will depend on Section 18 submission for Folicur
In Summary

- Do not expect miracles - small grains are cool season annuals.
- Winter wheat will likely have higher yield potential.
- Do not plant after corn and do plant after soybeans.
- Winter wheat after soybeans is feasible.
- Pay attention to diseases:
 - Winter wheat: early leaf spotting diseases and leaf rust
 - Spring wheat: leaf rust
- Pay attention to insects:
 - Aphids
 - OWBM
Award winning
Up-to-date
Bargain (~ 1.5 bu of wheat)
Great stocking stuffer
Order:
- (800) 876-8636
- (701) 231-1882
- shop.extension.umn.edu