Institute of Ag Professionals

Proceedings of the

2005 Crop Pest Management Shortcourse

www.extension.umn.edu/AgProfessionals

Do not reproduce or redistribute without the written consent of author(s).
Are populations of lambsquarters and giant ragweed becoming less sensitive to glyphosate?

Mark M. Loux
Horticulture and Crop Science
The Ohio State University
ALS-Resistant Weeds in Ohio by County
Through 2004

Legend

= amaranth, Powell (1)
= cocklebur, common (1)
= kochia (suspected) (1)
= lambsquarters, common (1)
= marestail (horseweed) (21)
= pigweed, smooth (1)
= ragweed, common (20)
= ragweed, giant (11)
= shattercane (1)
= waterhemp, common/tall (9)
1995-98 - ALS resistance gone wild

- Many species, many fields
- Some really weedy fields
- Would have become much worse

But

- Roundup Ready saves our ____
“THE COMPLEX TRANSFORMATIONS WHICH WERE REQUIRED FOR THE DEVELOPMENT OF GLYPHOSATE-TOLERANT CROPS WOULD BE UNLIKELY TO BE DUPLICATED IN NATURE TO YIELD GLYPHOSATE-RESISTANT WEEDS.”

— MONSENTO, 1995
Glyphosate-resistant marestail
Confirmed Cases of Glyphosate Resistant Marestail in IN & OH

- Counties confirmed glyphosate resistant
- Counties with no confirmed cases of glyphosate resistance OR not tested
Control of Multiple Resistant Marestail in the Field

28 DAT

Glyphosate - 1X

Glyphosate - 4X

FirstRate - 1X

FirstRate - 4X
FirstRate + glyphosate - 1X

Glyphosate + 2,4-D - 1X

FirstRate + glyphosate + 2,4-D - 1X
Glyphosate-resistant marestail in Ohio

- Developed first in continuous RR soybeans
 - Only glyphosate used
- Found following year in rotation of corn and RR soybeans
 - Only glyphosate used in soybeans
- So far, not found in fields with history of 2,4-D use in preplant burndown

- **Bottom line** - rotation away from glyphosate did not stop resistance unless another herbicide with activity on horseweed was also used
Glyphosate Resistant Weed Species

- Rigid ryegrass
 - 1996
 - Australia, South Africa, and CA
 - One biotype glyphosate, ALS, and ACCase resistant

- Goosegrass
 - Malaysia
 - Also resistant to ACCase herbicides

- Marestail/Horseweed
 - Many states East of the Mississippi River

- Italian ryegrass
 - Chile, Brazil, and OR (?)

- Hairy fleabane (closely related to marestail)
 - South Africa and Spain

- Buckhorn plantain
 - South Africa

- Common ragweed
 - 1 site in MO - also ALS resistant?
 - 10X resistant

- Palmer amaranth
 - GA and NC
 - high level of resistance

- Waterhemp
 - IA and MO
 - MO - high level
Erratic control of giant ragweed and lambsquarters in RR soybeans

Possible reasons:
- Plants too large, too old
- Some populations becoming less sensitive
- Glyphosate rates too low
- Late-emergers that escape POST treatment
- Stems infested with stalk-boring insects
- Sprayer tracks and dust
- Time of day
2001 POST – South Charleston
6-inch weeds - Roundup UMax – 20 oz
Consistency of Weed Control in Roundup Ready Soybean (6 years)
Michigan State University

1-pass program
POST (glyphosate)

2-pass program
PRE (residual) fb. POST (glyphosate)
2004 Glyphosate study - applied 1 day after cold front

<table>
<thead>
<tr>
<th></th>
<th>Lambsqtrs (% control)</th>
<th>Giant ragweed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rdup Wemax 16 oz</td>
<td>62</td>
<td>83</td>
</tr>
<tr>
<td>Rdup Wemax 22 oz</td>
<td>75</td>
<td>85</td>
</tr>
<tr>
<td>Rdup Wemax 33 oz</td>
<td>90</td>
<td>87</td>
</tr>
<tr>
<td>Rdup OriMax 16 oz</td>
<td>78</td>
<td>85</td>
</tr>
<tr>
<td>Rdup OriMax 16 oz + surfactant 0.25%</td>
<td>96</td>
<td>87</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

All applied with AMS - 17 lbs/100 gallons - 20 gpa
Lambsquarters - 2 to 3 inches tall
0.75 lb a.e. Touchdown Total on lambsquarters
Effect of surfactant rate - 4 sites
2003 Culp field study
glyphosate - 0.75 lb a.e.
4 - 6 and 10 - 12 inch plants
Glyphosate-resistant (?) lambsquarters populations

Hancock Co.
Darke Co.
Madison Co.
Morrow Co.
Sensitive
Untreated 0.75 lb ae/A 3.0 lb ae/A glyphosate
Tolerance vs Resistance vs Insensitivity

• Tolerance
 – Weed not well controlled from the start

• Resistance
 – Weed was controlled, but control decreased
 – Control failures implied
 – At least a 10X difference in response between S and R?

• Insensitivity
 – Variable control, generally more problematic
 – Difficult to determine exact reason
 – 2X to 4X difference in response between S and R
 – We should be able to affect the outcome??
Dose Response with Glyphosate on Lambsquarters

18 DAT

Untreated 1/100X 1/10X 1/4X 1X 4X 10X 100X

0.75 lb ae/A

Glyphosate
Dose Response - Common Lambsquarters to Glyphosate

- Col 1 vs Sensitive - Cos 03-04
- Col 1 vs Resistant?? - Mad 04-02F
- Col 1 vs Resistant - JC 03-04
- Col 1 vs Resistant - Han 04-04B

Sensitive - Cos 03-04 ($GR_{50} = 0.38 \text{ lb ae/A}$)
Resistant?? - Mad 04-02F ($GR_{50} = 0.72 \text{ lb ae/A}$; R/S ratio = 1.9)
Resistant - JC 03-04 ($GR_{50} = 1.25 \text{ lb ae/A}$; R/S ratio = 3.3)
Resistant - Han 04-04B ($GR_{50} = 1.52 \text{ lb ae/A}$; R/S ratio = 3.98)

Growth Reduction (% of Untreated)

Rates (X with 1X = 0.75 lb ae/A)
Level of resistance to ALS-inhibitors and glyphosate

R/S = ratio of resistance to susceptible

<table>
<thead>
<tr>
<th>ALS resistance</th>
<th>R/S ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marestail</td>
<td>32 - 943</td>
</tr>
<tr>
<td>Common ragweed</td>
<td>>1000</td>
</tr>
<tr>
<td>Giant ragweed</td>
<td>>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glyphosate resistance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Marestail</td>
<td>8 - 39</td>
</tr>
<tr>
<td>Common ragweed</td>
<td>10</td>
</tr>
<tr>
<td>Lambsquarters</td>
<td>3</td>
</tr>
</tbody>
</table>
2005 Large Plot Study Design - lambsquarters

Field length 160 ft

Roundup WeatherMax 22 oz/A

Followed By Roundup WeatherMax 44 oz/A

Followed By Roundup WeatherMax 22 oz/A

Roundup WeatherMax 44 oz/A

Followed By Roundup WeatherMax 44 oz/A

Roundup WeatherMax 44 oz/A

Followed By Roundup WeatherMax 44 oz/A

Roundup WeatherMax 22 oz/A

plus 0.25% surfactant
Lambsquarters surviving one glyphosate application
Lambsquarters surviving two glyphosate applications with seed
Hancock County - 2005

1 application
0.75 lbs glyphosate

1 vs 2 applications of glyphosate
Lambsquarters control in large-plot studies

<table>
<thead>
<tr>
<th>Site number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(% control - 3 WAT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1X</td>
<td>85</td>
<td>88</td>
<td>92</td>
<td>97</td>
<td>95</td>
<td>99</td>
</tr>
<tr>
<td>2X</td>
<td>94</td>
<td>99</td>
<td>96</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>1X fb 2X</td>
<td>95</td>
<td>97</td>
<td>96</td>
<td>95</td>
<td>97</td>
<td>99</td>
</tr>
<tr>
<td>2X fb 1X</td>
<td>99</td>
<td>99</td>
<td>97</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
</tbody>
</table>

1X = 0.75 lb ae/A of glyphosate
Hypothetical Development of a Resistant Weed Population with Repeated Herbicide Applications

% Resistant Weeds

0 10 20 30 40 50 60 70

0 applications 0.0001
1st application 0.001
2nd application 0.02
3rd application 0.30
4th application 4.2
5th application 60.5
Large Plot Results - 23 DAT vs 21 DAT Respray

<table>
<thead>
<tr>
<th>Treatment</th>
<th>23 DAT</th>
<th>21 DAT - Respray</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Control</td>
<td>% Dead Plants</td>
</tr>
<tr>
<td>WMax 22</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>WMax 44</td>
<td>80</td>
<td>49</td>
</tr>
<tr>
<td>WMax 22 + 1<sup>st</sup> Rate .3</td>
<td>80</td>
<td>44</td>
</tr>
</tbody>
</table>
Large Plot Photos – 21 DAT Respray

Roundup WeatherMax 22 oz/A fb
Roundup WeatherMax 44 oz/A

Roundup WeatherMax 44 oz/A fb
Roundup Weathermax 22 oz/A
Giant ragweed - small plot study - Licking Co.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>23 DAT#1</th>
<th>21 DAT#2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wmax 22 oz</td>
<td>56%</td>
<td>83%</td>
</tr>
<tr>
<td>Wmax 33 oz</td>
<td>62</td>
<td>80</td>
</tr>
<tr>
<td>Wmax 44 oz</td>
<td>69</td>
<td>87</td>
</tr>
<tr>
<td>Wmax 88 oz</td>
<td>79</td>
<td>94</td>
</tr>
<tr>
<td>Wmax + 1stRate - 22 + 0.3 oz</td>
<td>69</td>
<td>86</td>
</tr>
<tr>
<td>Wmax + Flexstar - 22 + 16 oz</td>
<td>69</td>
<td>87</td>
</tr>
<tr>
<td>1stRate 0.3 oz</td>
<td>75</td>
<td>97</td>
</tr>
<tr>
<td>Flexstar 21 oz</td>
<td>70</td>
<td>92</td>
</tr>
<tr>
<td>UTC (+ respray)</td>
<td>0</td>
<td>74</td>
</tr>
</tbody>
</table>

Respray (T#2) - 44 oz Wmax
Giant ragweed - small plot study - Licking Co.

Initial treatment	**# plants with seed**
Wmax 22 oz | 17
Wmax 33 oz | 21
Wmax 44 oz | 8
Wmax 88 oz | 1
Wmax + 1stRate - 22 + 0.3 oz | 19
Wmax + Flexstar - 22 + 16 oz | 13
1stRate 0.3 oz | 3
Flexstar 21 oz | 1
UTC (+ respray) | 38

All treatments resprayed with 44 oz Wmax
Management of Roundup Ready soybeans matters!

10 yrs no-till soybeans
Glyphosate/2,4-D burndown
+ one post glyphosate app

Corn/soybean rotation
PRE herb followed by POST glyphosate

4 years of RR soybeans
One vs two post glyphosate apps
Solutions for giant ragweed, lambsquarters

Use tillage or an effective preplant burndown
 - include 2,4-D with paraquat or glyphosate

Include residual herbicides
 - Lambsquarters
 - Scepter, Python, Valor, Gangster, Sencor, Canopy,
 Synchrony, Prowl
 - Giant ragweed
 - Scepter, Canopy, Synchrony, Gangster, FirstRate,
 Amplify
Solutions for giant ragweed, lambsquarters

Managing POST glyphosate applications

- Apply to young, small plants
 - within 4 weeks after weed emergence
 - when plants are less than 6 inches tall
- Use the “right rate”
 - 6 inches or less - 1.1 to 1.5 lbs a.e.
 - more than 6 inches - 1.5 lbs a.e.
- Make a second POST application
 - controls late-emergers
 - completes control of injured plants
 - greatly reduces weed seed production
 - 0.75 to 1.1 lbs a.e.
Development of resistance over time
Reducing selection pressure

- Limit use of glyphosate-based systems
 - Continuous Roundup Ready crops?
- Start clean
 - Tillage or preplant herbicide treatment
- Integrate glyphosate with other herbicides
 - Goal - more than one site of action on all weeds every year
 - Apply with 2,4-D ester in preplant treatments
 - Use preemergence herbicides
 - Apply in combination with other POST herbs?
Why use PRE herbicides in RR systems?

Improved control, yield protection, risk management

• Early-season weed control:
 – Adds flexibility in POST application window
 – Time management
 – Reduces early-season competition
• Improves yield (or at least protects yield)
• Control of problem weeds - LQ, GRW
• Control of resistant weeds that might be developing
• Delaying onset of resistance
PRE/POST vs POST – RR soybean yield
POST = glyphosate 0.75 lb
South Charleston, OH

Yield (bushels/A)

Preplant herbicide

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>63</td>
<td>42</td>
</tr>
<tr>
<td>Canopy</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>Scepter</td>
<td>68</td>
<td>51</td>
</tr>
</tbody>
</table>
Managing POST glyphosate applications

- Goal - very few survivors, minimal seed produced
 - “Commercial” control good enough?
- Make first application to young, small weeds
 - Less than 6 inches tall, less than 4 weeks old
- Use the “right rate”
 - 0.75 lbs too low on tough weeds
 - 1.1 to 1.5 lbs
- Make second POST application to ensure effective control and prevent seed production
 - 0.75 to 1.1 lbs
- Mix with other POST herbs?
OSU Information Resources

• OSU C.O.R.N. Newsletter
 – corn.osu.edu

• OSU Weed Science
 – agcrops.osu.edu/weeds

• Weed Control Guide for Ohio and Indiana

• loux.1@osu.edu